如圖,點P是邊長為1的菱形ABCD外一點,,ECD的中點,

(1)證明:平面平面PAB;  
(2)求二面角ABEP的大小。
(1)如圖,連結(jié)BD,由四邊形ABCD是菱形且知,
BCD是等邊三角形,
E是CD的中點,
而AB//CD, 
平面ABCD,

而呵呵平面PAB。
平面PAB。
(2)由(1)知,平面PAB,所以
是二面角A—BE—P的平面角 
平面ABCD,



故二面角A—BE—P的大小是 
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖所示,在正方體中,E是棱的中點.

(Ⅰ)求直線BE與平面所成的角的正弦值;
(Ⅱ)在棱上是否存在一點F,使平面?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題12分)
如圖,ABCD是平行四邊形,

(1)求證:
(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
如圖,四棱錐的底面是一個邊長為4的正方形,側(cè)面是正三角形,側(cè)面底面,
(Ⅰ)求四棱錐的體積;
(Ⅱ)求直線與平面所成的角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,四棱錐S-ABCD的底面是矩形,AB=a,AD=2,SA=1,且SA⊥底面ABCD,若邊BC上存在異于B,C的一點P,使得.
(1)求a的最大值;
(2)當(dāng)a取最大值時,求異面直線AP與SD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖所示,正方形ADEF與梯形ABCD所在的平面互相垂直,


(Ⅰ)求證:;
(Ⅱ)在上找一點,使得平面,請確定點的位置,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本小題滿分12分)
如圖所示,正方形和矩形所在的平面相互垂直,已知.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖甲所示,在正方形中,E、F分別是邊、的中點,D是EF的中點,現(xiàn)沿SESFEF把這個正方形折成一個幾何體(如圖乙所示),使、三點重合于點G,則下面結(jié)論成立的是( )
A.SD⊥平面EFG B.GF⊥平面SEF C.SG⊥平面EFG D.GD⊥平面SEF

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

地球北緯圈上有兩點,點在東經(jīng)處,點在西經(jīng)處,若地球半徑為,則兩點的球面距離為 _____________

查看答案和解析>>

同步練習(xí)冊答案