【題目】已知橢圓C: =1(a>b>0)的右焦點(diǎn)為F2(1,0),點(diǎn)P(1, )在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)坐標(biāo)原點(diǎn)O的兩條直線EF,MN分別與橢圓C交于E,F(xiàn),M,N四點(diǎn),且直線OE,OM的斜率之積為﹣ ,求證:四邊形EMFN的面積為定值.

【答案】解:(Ⅰ)∵為點(diǎn) 在橢圓C上,橢圓C的右焦點(diǎn)為F2(1,0), 則 ,解得 ,
∴橢圓C的方程為
(Ⅱ)當(dāng)直線EM斜率存在時(shí),設(shè)直線方程為l:y=kx+m,E(x1 , y1),M(x2 , y2),
聯(lián)立 得(1+2k2)x2+4kmx+2m2﹣2=0, ,
= ,
,即2m2=2k2+1,
原點(diǎn)到直線EM的距離為

= =
=
= ,

當(dāng)直線EM斜率不存在時(shí), ,x1=x2 , y1=﹣y2 , ∴
,解得 ,
【解析】(Ⅰ)由題意可得: ,解出即可得出.(Ⅱ)當(dāng)直線EM斜率存在時(shí),設(shè)直線方程為l:y=kx+m,E(x1 , y1),M(x2 , y2),與橢圓方程聯(lián)立得(1+2k2)x2+4kmx+2m2﹣2=0,利用斜率計(jì)算公式、根與系數(shù)的關(guān)系及其 ,可得2m2=2k2+1,原點(diǎn)到直線EM的距離為 ,利用 ,代入化簡(jiǎn)即可得出定值,斜率不存在時(shí)也成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=1+lnx﹣ ,其中k為常數(shù).
(1)若k=0,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程.
(2)若k=5,求證:f(x)有且僅有兩個(gè)零點(diǎn);
(3)若k為整數(shù),且當(dāng)x>2時(shí),f(x)>0恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)命題中錯(cuò)誤的是(
A.在一次試卷分析中,從每個(gè)考室中抽取第5號(hào)考生的成績(jī)進(jìn)行統(tǒng)計(jì),不是簡(jiǎn)單隨機(jī)抽樣
B.對(duì)一個(gè)樣本容量為100的數(shù)據(jù)分組,各組的頻數(shù)如下:

區(qū)間

[17,19)

[19,21)

[21,23)

[23,25)

[25,27)

[27,29)

[29,31)

[31,33]

頻數(shù)

1

1

3

3

18

16

28

30

估計(jì)小于29的數(shù)據(jù)大約占總體的58%
C.設(shè)產(chǎn)品產(chǎn)量與產(chǎn)品質(zhì)量之間的線性相關(guān)系數(shù)為﹣0.91,這說(shuō)明二者存在著高度相關(guān)
D.通過(guò)隨機(jī)詢問(wèn)110名性別不同的行人,對(duì)過(guò)馬路是愿意走斑馬線還是愿意走人行天橋進(jìn)行抽樣調(diào)查,得到如表列聯(lián)表:

總計(jì)

走天橋

40

20

60

走斑馬線

20

30

50

總計(jì)

60

50

110

,則有99%以上的把握認(rèn)為“選擇過(guò)馬路方式與性別有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)g(x)=a﹣x2 ≤x≤e,e為自然對(duì)數(shù)的底數(shù))與h(x)=2lnx的圖象上存在關(guān)于x軸對(duì)稱的點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.[1, +2]
B.[1,e2﹣2]
C.[ +2,e2﹣2]
D.[e2﹣2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi , yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為: =0.85x﹣85.71,則下列結(jié)論中不正確的是( )
A.3與3x2+2ax+b=0具有正的線性相關(guān)關(guān)系
B.回歸直線過(guò)樣本點(diǎn)的中心( ,
C.若該大學(xué)某女生身高為170cm,則可斷定其體重必為58.79kg
D.若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了考查某廠2000名工人的生產(chǎn)技能情況,隨機(jī)抽查了該廠n名工人某天的產(chǎn)量(單位:件),整理后得到如下的頻率分布直方圖(產(chǎn)品數(shù)量的分組區(qū)間為[10,15),[15,20),[20,25),[25,30),[30,35]),其中產(chǎn)量在[20,25)的工人有6名.
(Ⅰ)求這一天產(chǎn)量不小于25的工人人數(shù);
(Ⅱ)工廠規(guī)定從產(chǎn)量低于20件的工人中隨機(jī)的選取2名工人進(jìn)行培訓(xùn),求這2名工人不在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖,則(
A.函數(shù)f(x)有1個(gè)極大值點(diǎn),1個(gè)極小值點(diǎn)
B.函數(shù)f(x)有2個(gè)極大值點(diǎn),2個(gè)極小值點(diǎn)
C.函數(shù)f(x)有3個(gè)極大值點(diǎn),1個(gè)極小值點(diǎn)
D.函數(shù)f(x)有1個(gè)極大值點(diǎn),3個(gè)極小值點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】200名職工年齡分布如圖所示,從中隨機(jī)抽取40名職工作樣本,采用系統(tǒng)抽樣方式,按1~200編號(hào)分為40組,分別為1~5,6~10,…,196~200,第5組抽取號(hào)碼為23,第9組抽取號(hào)碼為;若采用分層抽樣,40﹣50歲年齡段應(yīng)抽取人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的首項(xiàng)a1=1,且an+1=2an+1(n∈N*
(Ⅰ)證明數(shù)列{an+1}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Sn;
(Ⅲ)在條件(Ⅱ)下對(duì)任意正整數(shù)n,不等式Sn+ ﹣1>(﹣1)na恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案