【題目】已知、是雙曲線,)的兩個頂點,點是雙曲線上異于的一點,為坐標(biāo)原點,射線交橢圓于點,設(shè)直線、、的斜率分別為、、.

(1)若雙曲線的漸近線方程是,且過點,求的方程;

(2)在(1)的條件下,如果,求△的面積;

(3)試問:是否為定值?如果是,請求出此定值;如果不是,請說明理由.

【答案】1;(2;(3)定值為0.

【解析】

(1)設(shè)雙曲線方程為,將點代入方程,得到答案.

(2)設(shè),根據(jù)得到,,上,則代入方程解得,利用面積公式得到答案.

(3)設(shè),,三點共線

,得到答案.

1)雙曲線的漸近線方程是

設(shè)雙曲線方程為,將點代入方程,解得

的方程為.

(2)設(shè)

化簡得到:

根據(jù)對稱性不妨設(shè)在第一象限,上,則

代入方程得到

(3)設(shè),

三點共線

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019613日,三屆奧運亞軍,羽壇傳奇,馬來西亞名將李宗偉宣布退役,當(dāng)天有大量網(wǎng)友關(guān)注此事件,某網(wǎng)上論壇從關(guān)注此事件跟帖中,隨機(jī)抽取了100名網(wǎng)友進(jìn)行調(diào)查統(tǒng)計,先分別統(tǒng)計他們在跟帖中的留言條數(shù),再把網(wǎng)友人數(shù)按留言條數(shù)分成6組;,得到如下圖所小的頻率分布直方圖;并將其中留言不低于40條的規(guī)定為“強(qiáng)烈關(guān)注”,否則為“一般關(guān)注”,對這100名網(wǎng)友進(jìn)一步統(tǒng)計,得到部分?jǐn)?shù)據(jù)如下的列聯(lián)表.

1)在答題卡上補(bǔ)全2×2列聯(lián)表中數(shù)據(jù),并判斷能否有95%的把握認(rèn)為網(wǎng)友對此事件是否為“強(qiáng)烈關(guān)注”與性別有關(guān)?

2)該論壇欲在上述“強(qiáng)烈關(guān)注”的網(wǎng)友中按性別進(jìn)行分層抽樣,共抽取5人,并在此5人中隨機(jī)抽取兩名接受訪談,記女性訪談?wù)叩娜藬?shù)為占,求5的分布列與數(shù)學(xué)期望.

0.150

0.100

0.050

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

參考公式與數(shù)據(jù):,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),為橢圓的左、右焦點,動點的坐標(biāo)為,過點的直線與橢圓交于,兩點.

(3)的坐標(biāo);

(4)若直線,,的斜率之和為0,求的所有整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在區(qū)間內(nèi)的單調(diào)函數(shù),且對任意,都有,設(shè)的導(dǎo)函數(shù),,則函數(shù)的零點個數(shù)為( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)集由實數(shù)構(gòu)成,且滿足:若),則.

(1)若,試證明中還有另外兩個元素;

(2)集合是否為雙元素集合,并說明理由;

(3)若中元素個數(shù)不超過8個,所有元素的和為,且中有一個元素的平方等于所有元素的積,求集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的表格填上數(shù)字,設(shè)在第i行第j列所組成的數(shù)字為,,則表格中共有51的填表方法種數(shù)為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于任意的,若數(shù)列同時滿足下列兩個條件,則稱數(shù)列具有性質(zhì)m;存在實數(shù)M,使得成立.

數(shù)列中,、),判斷、是否具有性質(zhì)m

若各項為正數(shù)的等比數(shù)列的前n項和為,且,,求證:數(shù)列具有性質(zhì)m;

數(shù)列的通項公式對于任意,數(shù)列具有性質(zhì)m,且對滿足條件的M的最小值,求整數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面,,,,分別是的中點.

(1)求三棱錐的體積;

(2)若異面直線所成的角為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)表示不大于實數(shù)的最大整數(shù),函數(shù),若關(guān)于的方程有且只有5個解,則實數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案