已知角α的頂點(diǎn)為原點(diǎn),始邊為x軸的正半軸,若角α的終邊過(guò)P(-3a,4a),a≠0,求2sinα+cosα的值.
考點(diǎn):任意角的三角函數(shù)的定義
專(zhuān)題:計(jì)算題,三角函數(shù)的求值
分析:利用任意角的三角函數(shù)定義求出sinα、cosα,即可求2sinα+cosα的值.
解答: 解:∵角α的終邊過(guò)P(-3a,4a),
∴x=-3a,y=4a,r=5|a|,
a>0,則2sinα+cosα=2×
4
5
-
3
5
=1;
a<0,則2sinα+cosα=-2×
4
5
+
3
5
=-1.
點(diǎn)評(píng):此題考查了任意角的三角函數(shù)定義,熟練掌握三角函數(shù)的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U={x|1≤x≤7,x∈Z},A={1,3,5,7},B={2,4,5},則B∩(∁UA)=( 。
A、{5}
B、{2,4}
C、{2,4,5,6}
D、{1,3,5,6,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,河流航線(xiàn)AC段長(zhǎng)40公里,工廠(chǎng)B位于碼頭C正北30公里處,原來(lái)工廠(chǎng)B所需原料需由碼頭A裝船沿水路到碼頭C后,再改陸路運(yùn)到工廠(chǎng)B,由于水運(yùn)太長(zhǎng),運(yùn)費(fèi)太高,工廠(chǎng)B與航運(yùn)局協(xié)商在AC段上另建一碼頭D,并由碼頭D到工廠(chǎng)B修一條新公路,原料改為按由A到D再到B的路線(xiàn)運(yùn)輸.設(shè)|AD|=x公里(0≤x≤40),每10噸貨物總運(yùn)費(fèi)為y元,已知每10噸貨物每公里運(yùn)費(fèi),水路為l元,公路為2元.
(1)寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式;
(2)要使運(yùn)費(fèi)最省,碼頭D應(yīng)建在何處?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
(1)(
32
×
3
)6
+(
2
)
4
3
-(-2013)0
(2)log23×log34×log48.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=cos2x+2
3
sinxcosx-sin2x
(1)求f(x)的最小正周期;
(2)若x∈[-
π
12
,
π
4
],則當(dāng)x取何值時(shí)函數(shù)取得最值,最值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在邊長(zhǎng)為4的正方形ABCD上有一動(dòng)點(diǎn)P,P沿著折線(xiàn)BCDA由點(diǎn)B向點(diǎn)A移動(dòng)(點(diǎn)P與A、B不重合),設(shè)P點(diǎn)移動(dòng)的路程為x,△ABP的面積為y.
(1)求△ABP的面積與P點(diǎn)移動(dòng)的路程間的函數(shù)關(guān)系式;
(2)作出函數(shù)的圖象,并根據(jù)圖象求出值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=kax-a-x(a>0且a≠1)是定義在R上的奇函數(shù).
(1)求k的值;
(2)若f(1)=
3
2
,且函數(shù)f(x)在[1,t]上的值域?yàn)閇
3
2
,
15
4
],求t的值;
(3)設(shè)函數(shù)g(x)=f(x)-f(2-x)+3,x1,x2是R上的任意兩個(gè)實(shí)數(shù),且x1+x2=1,若g(mx1)+g(mx2)恒為一個(gè)常數(shù),求非零常數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=1-ln(x+1),g(x)=ax2-x+1.
(1)求證:1-x≤f(x)≤
1
1+x
;
(2)當(dāng)x≥0時(shí),若f(x)≥g(x)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=alnx+
1
2
x2(∈R).
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若f(x)≥
1
2
x2+
1
2
x+m對(duì)任意的a∈(1,e],x∈(1,e]恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)a∈(1,e],g(x)=f(x)-(a+1)x,證明:對(duì)?x1,x2∈[1,a],恒有|g(x1)-g(x2)|<1.

查看答案和解析>>

同步練習(xí)冊(cè)答案