【題目】某單位共有10名員工,他們某年的收入如下表:
員工編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
年薪(萬(wàn)元) | 3 | 3.5 | 4 | 5 | 5.5 | 6.5 | 7 | 7.5 | 8 | 50 |
(1)從該單位中任取2人,此2人中年薪收入高于5萬(wàn)的人數(shù)記為,求的分布列和期望;
(2)已知員工年薪收入與工作所限成正相關(guān)關(guān)系,某員工工作第一年至第四年的年薪如下表:
工作年限 | 1 | 2 | 3 | 4 |
年薪(萬(wàn)元) | 3.0 | 4.2 | 5.6 | 7.2 |
預(yù)測(cè)該員工第五年的年薪為多少?
附:線性回歸方程中系數(shù)計(jì)算公式和參考數(shù)據(jù)分別為:
,,其中為樣本均值,,,()
【答案】(1)的分布列見(jiàn)解析,期望為;(2)預(yù)測(cè)該員工年后的年薪收入為8.5萬(wàn)元.
【解析】
試題分析:(1)10人中年薪高于5萬(wàn)的有6人,的取值可能為0,1,2,由古典概型概率公式可計(jì)算出概率,得分布列,再由期望公式計(jì)算出期望;(2)由所給公式求出回歸方程,代入可得預(yù)測(cè)值.
試題解析:(1)年薪高于5萬(wàn)的有6人,低于或等于5萬(wàn)的有4人;
取值為0,1,2
,,,
∴的分布列為
0 | 1 | 2 | |
∴.
(2)設(shè)分別表示工作年限及相應(yīng)年薪,則,,,,,
由線性回歸方程為,可預(yù)測(cè)該員工年后的年薪收入為8.5萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】全國(guó)人民代表大會(huì)在北京召開(kāi),為了搞好對(duì)外宣傳工作,會(huì)務(wù)組選聘了16名男記者和14名女記者擔(dān)任對(duì)外翻譯工作.調(diào)查發(fā)現(xiàn),男、女記者中分別有10人和6人會(huì)俄語(yǔ).
(1)根據(jù)以上數(shù)據(jù)完成以下列聯(lián)表:
會(huì)俄語(yǔ) | 不會(huì)俄語(yǔ) | 總計(jì) | |
男 | |||
女 | |||
總計(jì) |
(2)能否在犯錯(cuò)的概率不超過(guò)0.10的前提下認(rèn)為性別與會(huì)俄語(yǔ)有關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某人坐飛機(jī)去外地辦一件急事,下面是他自己從家里出發(fā)到坐在機(jī)艙內(nèi)這一過(guò)程的主要算法:
S1 乘車去飛機(jī)場(chǎng)售票處;
S2 _____;
S3 憑票上機(jī),對(duì)號(hào)入座.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某加工廠用某原料由車間加工出 產(chǎn)品,由乙車間加工出 產(chǎn)品.甲車間加工一箱原料需耗費(fèi)工時(shí)10小時(shí)可加工出7千克 產(chǎn)品,每千克 產(chǎn)品獲利40元.乙車間加工一箱原料需耗費(fèi)工時(shí)6小時(shí)可加工出4千克 產(chǎn)品,每千克 產(chǎn)品獲利50元.甲、乙兩車間每天共能完成至多70箱原料的加工,每天甲、乙車間耗費(fèi)工時(shí)總和不得超過(guò)480小時(shí),甲、乙兩車間每天獲利最大的生產(chǎn)計(jì)劃為( )
A. 甲車間加工原料10箱,乙車間加工原料60箱
B. 甲車間加工原料15箱,乙車間加工原料55箱
C. 甲車間加工原料18箱,乙車間加工原料50箱
D. 甲車間加工原料40箱,乙車間加工原料30箱
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)是圓上的點(diǎn),是線段的中點(diǎn).
(Ⅰ)求點(diǎn)的軌跡的方程;
(Ⅱ)過(guò)點(diǎn)的直線和軌跡有兩個(gè)交點(diǎn)(不重合),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面五邊形是軸對(duì)稱圖形(如圖1),BC為對(duì)稱軸,AD⊥CD,AD=AB=1,,將此五邊形沿BC折疊,使平面ABCD⊥平面BCEF,得到如圖2所示的空間圖形,對(duì)此空間圖形解答下列問(wèn)題.
(1)證明:AF∥平面DEC;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)證明函數(shù)在上是減函數(shù),上是增函數(shù);
(2)若方程有且只有一個(gè)實(shí)數(shù)根,判斷函數(shù)的奇偶性;
(3)在(2)的條件下探求方程的根的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等腰三角形的周長(zhǎng)是18,底邊長(zhǎng)y是一腰長(zhǎng)x的函數(shù),則( )
A.y=9-x(0<x≤9)
B.y=9-x(0<x<9)
C.y=18-2x(4.5≤x≤9)
D.y=18-2x(4.5<x<9)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com