直線3x-4y-4=0被圓(x-3)2+y2=9截得的弦長為(  )
A.B.4C.D. 2
C

試題分析:根據(jù)圓的方程可得圓心為(3,0),半徑為3。
所以,圓心到直線的距離為,所以,弦長為2,故選C。
點評:簡單題,解題的關(guān)鍵是利用數(shù)形結(jié)合的思想,通過半徑和弦的一半、弦心距構(gòu)成的三角形,利用勾股定理求解。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知是平面內(nèi)互相垂直的兩條直線,它們的交點為,動點分別在上,且,則過三點的動圓掃過的區(qū)域的面積為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在直角坐標(biāo)系內(nèi),點實施變換后,對應(yīng)點為,給出以下命題:
①圓上任意一點實施變換后,對應(yīng)點的軌跡仍是圓;
②若直線上每一點實施變換后,對應(yīng)點的軌跡方程仍是;
③橢圓上每一點實施變換后,對應(yīng)點的軌跡仍是離心率不變的橢圓;
④曲線上每一點實施變換后,對應(yīng)點的軌跡是曲線是曲線上的任意一點,是曲線上的任意一點,則的最小值為。
以上正確命題的序號是                  (寫出全部正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過原點O作圓x2+y2-8x=0的弦OA。
(1)求弦OA中點M的軌跡方程;
(2)延長OA到N,使|OA|=|AN|,求N點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點A(1,-1)、B(-1,1)且圓心在直線x+y-2=0上的圓的方程是(  )
A.(x-3)2+(y+1)2=4B.(x+3)2+(y-1)2=4
C.(x-1)2+(y-1)2=4D.(x+1)2+(y+1)2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線與圓的位置關(guān)系是                .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,設(shè)線段的長度為1,端點在邊長為2的正方形的四邊上滑動.當(dāng)沿著正方形的四邊滑動一周時,的中點所形成的軌跡為,若圍成的面積為,則         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)直線與圓相交于點,則弦的長等于(  )
A.B.C.D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

是圓O的直徑,為圓O上一點,過作圓O的切線交延長線于點,若DC=2,BC=1,則       .

查看答案和解析>>

同步練習(xí)冊答案