5i2014
2-i
=( 。
A、-2+iB、-2-i
C、-1-2iD、-1+2i
考點:復(fù)數(shù)代數(shù)形式的混合運算
專題:數(shù)系的擴充和復(fù)數(shù)
分析:利用復(fù)數(shù)的周期性可得i2014=(i4503•i2=-1.再利用復(fù)數(shù)的運算法則即可得出.
解答: 解:∵i2014=(i4503•i2=-1.
∴原式=
-5
2-i
=
-5(2+i)
(2-i)(2+i)
=
-5(2+i)
5
=-2-i.
故選:B.
點評:本題考查了復(fù)數(shù)的周期性、復(fù)數(shù)的運算法則,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

定義:對平面內(nèi)的凸n邊形A1A2A3…An,若點M滿足
MA1
+
MA2
+
MA3
+…+
MAn
=0,則點M稱為該凸n邊形的“平衡點”,則對任意的凸n邊形,它的“平衡點”的個數(shù)為( 。
A、有且僅有1個
B、有n個
C、無數(shù)個
D、不確定,但與n有關(guān)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)a,b∈R,且a+b=2,則(
1
2
a+(
1
2
b的最小值是(  )
A、1
B、2
C、
1
2
D、
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從學號為0~49的高一某班50名學生中隨機選取5名同學參加數(shù)學測試,采用系統(tǒng)抽樣的方法,則所選5名學生的學號可能是(  )
A、1,2,3,4,5
B、5,16,27,38,49
C、2,4,6,8,10
D、4,13,22,31,40

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若向量
a
=(x-2,3)與向量
b
=(1,y+2)相等,則(  )
A、x=1,y=3
B、x=3,y=1
C、x=1,y=-5
D、x=5,y=-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線
x2
25
-
y2
16
=1的漸近線方程是(  )
A、y=±
16
25
x
B、y=±
25
16
x
C、y=±
5
4
x
D、y=±
4
5
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,在[1,+∞)上為增函數(shù)的是(  )
A、y=(x-2)2
B、y=|x-1|
C、y=
1
x+1
D、y=-(x+1)2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)有函數(shù)組:
①f(x)=
x2-1
x-1
,g(x)=x+1;
②f(x)=
x+1
x-1
,g(x)=
x2-1
;
③f(x)=
x2-2x+1
,g(x)=|x-1|;
④f(x)=2x-1,g(t)=2t-1.
其中表示同一個函數(shù)的有(  )
A、①②B、②④C、①③D、③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)求值sin34°sin26°-sin56°cos26°
(2)化簡
cos(α-
π
2
)
sin(
π
2
+α)
•sin(-α-2π)•cos(2π-α).

查看答案和解析>>

同步練習冊答案