5.函數(shù)f(x)=$\frac{\sqrt{x+1}}{x-5}$的定義域?yàn)椋ā 。?table class="qanwser">A.[-1,+∞)B.[-1,5)∪(5,+∞)C.[-1,5)D.(5,+∞)

分析 由根式內(nèi)部的代數(shù)式大于等于0,分式的分母不為0聯(lián)立不等式組求解.

解答 解:由$\left\{\begin{array}{l}{x+1≥0}\\{x-5≠0}\end{array}\right.$,解得:x≥-1且x≠5.
∴函數(shù)f(x)=$\frac{\sqrt{x+1}}{x-5}$的定義域?yàn)閇-1,5)∪(5,+∞).
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)的定義域及其求法,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知等比數(shù)列{an}的前n項(xiàng)和為Sn=2n-1+k,則f(x)=x3-kx2-2x+1的極大值為( 。
A.2B.$\frac{5}{2}$C.3D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知A,B是橢圓C:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的左右頂點(diǎn),P是異于A,B的橢圓上一點(diǎn),.
( 1 )求P到定點(diǎn)Q(0,1)的最大值;
(2)設(shè)PA,PB的斜率為k1,k2,求證:k1k2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.下列命題正確的有①⑤.(填序號(hào))
①若直線與平面有兩個(gè)公共點(diǎn),則直線在平面內(nèi);
②若直線l上有無數(shù)個(gè)點(diǎn)不在平面α內(nèi),則l∥α;
③若直線l與平面α相交,則l與平面α內(nèi)的任意直線都是異面直線;
④如果兩條異面直線中的一條與一個(gè)平面平行,則另一條直線一定與該平面相交;
⑤若直線l與平面α平行,則l與平面α內(nèi)的直線平行或異面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x2+ax在x=0與x=1處的切線互相垂直.
(1)若函數(shù)g(x)=f(x)+$\frac{2}$lnx-bx在(0,+∞)上單調(diào)遞增,求a,b的值;
(2)設(shè)函數(shù)h(x)=$\left\{\begin{array}{l}lnx,x>0\\ f(x+1),x≤0\end{array}$,若方程h(x)-kx=0有四個(gè)不相等的實(shí)數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列說法正確的是( 。
A.“a<b”是“am2<bm2”的充要條件
B.命題“?x∈R,x3-x2-1≤0”的否定是“?x∈R,x3-x2-1≤0”
C.“若 a,b都是奇數(shù),則 a+b是偶數(shù)”的逆否命題是“若 a+b不是偶數(shù),則 a,b不都是奇數(shù)”
D.若 p∧q為假命題,則 p,q均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}是等差數(shù)列,其前n項(xiàng)和公式為Sn,a3=6,S3=12
(Ⅰ)求an;
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知sin(α+π)=-$\frac{1}{3}$,則sin(2α+$\frac{π}{2}$)=$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.用列舉法表示小于10的所有自然數(shù)組成的集合{0,1,2,3,4,5,6,7,8,9}.

查看答案和解析>>

同步練習(xí)冊(cè)答案