【題目】小明同學對棱長為2的正方體的性質(zhì)進行研究,得到了如下結(jié)論:①12條棱中可構(gòu)成16對異面直線;②過正方體的一個頂點的截面可能是三角形、四邊形、五邊形、六邊形;③以正方體各表面中心為頂點的正八面體的表面積是;④與正方體各棱相切的球的體積是:.其中正確的序號是______.

【答案】

【解析】

畫出圖形,對四個選項逐一分析即可得出正確選項.

對于①,12條棱中可構(gòu)成異面直線的有24對,原因為:對于每一條棱,有三條和它平行,四條和它相交,因此有4條和他是異面,而擴展到12條棱為:,而由于兩條作為一對,需要再除以2,得到24對,故錯誤;

對于②,如下圖,過正方體的一個頂點的截面可能是三角形、四邊形、五邊形,故錯誤;

對于③,先畫出圖形:

正八面體每個面是全等的正三角形,棱長為,表面積為,故錯誤;

對于④,由于此球與正方體的各棱相切,則球的半徑正好是正方體的面對角線的一半,

正方體的棱長為2,則球的半徑是,則,故正確.

故答案為:④.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術(shù)》是我國古代著名數(shù)學經(jīng)典,其中對勾股定理的論述,比西方早一千多年,其中有這樣一個問題:今有圓材埋在壁中,不知大小;以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?其意為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該材料,鋸口深1寸,鋸道長1尺,問這塊圓柱形木料的直徑是多少?長為0.5丈的圓柱形木材部分鑲嵌在墻體中,截面圖如圖所示(陰影部分為鑲嵌在墻體內(nèi)的部分).己知弦尺,弓形高寸,估算該木材鑲嵌墻內(nèi)部分的體積約為( )(注:一丈=10=100寸,

A.300立方寸B.305.6立方寸C.310立方寸D.316.6立方寸

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,過點的直線,兩點,圓是以線段為直徑的圓.

1)證明:坐標原點在圓上;

2)設(shè)圓過點,求直線與圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求的單調(diào)性和極值;

(Ⅱ)若函數(shù)至少有1個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圖()是某品牌汽車年月銷量統(tǒng)計圖,圖()是該品牌汽車月銷量占所屬汽車公司當月總銷量的份額統(tǒng)計圖,則下列說法錯誤的是(

A.該品牌汽車年全年銷量中,月份月銷量最多

B.該品牌汽車年上半年的銷售淡季是月份,下半年的銷售淡季是月份

C.年該品牌汽車所屬公司月份的汽車銷量比月份多

D.該品牌汽車年下半年月銷量相對于上半年,波動性小,變化較平穩(wěn)

查看答案和解析>>

同步練習冊答案