已知正項(xiàng)數(shù)列的首項(xiàng),前項(xiàng)和滿足
(Ⅰ)求證:為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(Ⅱ)記數(shù)列的前項(xiàng)和為,若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

解析試題分析:(Ⅰ)求證為等差數(shù)列,只需證等于常數(shù),由,而,代入整理可得為等差數(shù)列,從而求出數(shù)列的通項(xiàng)公式;(Ⅱ)不等式恒成立,轉(zhuǎn)化為求的最大值,而的前項(xiàng)和為可用拆項(xiàng)相消法求得的最大值,從而解一元二次不等式得實(shí)數(shù)的取值范圍.
試題解析:(Ⅰ)證明:當(dāng)時(shí),,又,,因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/c9/f/f63mh1.png" style="vertical-align:middle;" />,,, 即,,所以數(shù)列是首項(xiàng)為,公差為的等差數(shù)列.
由此可得,由,當(dāng)時(shí),也適合,所以 ;
(Ⅱ)因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/10/b/w4fya3.png" style="vertical-align:middle;" />,
所以, , ,對任意的,不等式恒成立,,解得,
所以對任意的,不等式恒成立,實(shí)數(shù)的取值范圍
考點(diǎn):1、等差數(shù)列的證明,2、的關(guān)系,3、求數(shù)列的通項(xiàng)公式,4、數(shù)列求和,5、解一元二次不等式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是首項(xiàng)為,公差為的等差數(shù)列是其前項(xiàng)和.
(1)若,,求數(shù)列的通項(xiàng)公式;
(2)記,且、、成等比數(shù)列,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為等差數(shù)列,且,的前項(xiàng)和.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(II)設(shè),求數(shù)列的通項(xiàng)公式及其前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的前n項(xiàng)和為,滿足等式
(Ⅰ)求的值;
(Ⅱ)求證:數(shù)列是等差數(shù)列;
(Ⅲ)若數(shù)列滿足,求數(shù)列的前n項(xiàng)和;
(Ⅳ)設(shè),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等差數(shù)列{an}中,為其前n項(xiàng)和,且
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)均為正數(shù)的兩個(gè)無窮數(shù)列滿足
(Ⅰ)當(dāng)數(shù)列是常數(shù)列(各項(xiàng)都相等的數(shù)列),且時(shí),求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)都是公差不為0的等差數(shù)列,求證:數(shù)列有無窮多個(gè),而數(shù)列惟一確定;
(Ⅲ)設(shè),,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列是首項(xiàng)為1,公差為的等差數(shù)列,數(shù)列是首項(xiàng)為1,公比為的等比
數(shù)列.
(1)若,,求數(shù)列的前項(xiàng)和;
(2)若存在正整數(shù),使得.試比較的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列{an}的通項(xiàng)公式為,從數(shù)列{an}中依次取出a1,a2,a4,a8,…,,…,構(gòu)成一個(gè)新的數(shù)列{bn},求{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)已知數(shù)列的前項(xiàng)和為,,,求
(2)已知等差數(shù)列的前項(xiàng)和為,求數(shù)列的前2012項(xiàng)和

查看答案和解析>>

同步練習(xí)冊答案