已知直線l:x+2y-2=0,試求:
(1)點(diǎn)P(-2,-1)關(guān)于直線l的對(duì)稱點(diǎn)坐標(biāo);
(2)直線l1:y=x-2關(guān)于直線l對(duì)稱的直線l2的方程;
(3)直線l關(guān)于點(diǎn)(1,1)對(duì)稱的直線方程.
解:(1)設(shè)點(diǎn)P關(guān)于直線l的對(duì)稱點(diǎn)為P′(x0,y0), 則線段PP′的中點(diǎn)M在對(duì)稱軸l上,且PP′⊥l. ∴ ,解之得: 即P′坐標(biāo)為(,). (2)直線l1:y=x-2關(guān)于直線l對(duì)稱的直線為l2,則l2上任一點(diǎn)P(x,y)關(guān)于l 的對(duì)稱點(diǎn)P′(x′,y′)一定在直線l1上,反之也成立. 由 得 把(x′,y′)代入方程y=x-2并整理,得 7x-y-14=0 即直線l2的方程為7x-y-14=0. (3)設(shè)直線l關(guān)于點(diǎn)A(1,1)的對(duì)稱直線為l′,則直線l上任一點(diǎn)P(x1,y1) 關(guān)于點(diǎn)A的對(duì)稱點(diǎn)P′(x,y)一定在直線l′上,反之也成立. 由 得 將(x1,y1)代入直線l的方程得: x+2y-4=0. ∴ 直線l′的方程為x+2y-4=0.
|
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
A、-1 | B、-2 | C、0 | D、2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
d |
d |
OQ |
1 |
18 |
1 |
18 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com