已知函數(shù)f(x)=x5+ax3+bx+1在x=1和x=2處取得極值.
(1)求a和b的值;
(2)求f(x)的單調(diào)區(qū)間.
分析:(I)利用函數(shù)的導(dǎo)數(shù)在極值點(diǎn)處的值為0,列出方程組,求出a,b的值.
(Ⅱ)將a,b的值代入導(dǎo)函數(shù),令導(dǎo)函數(shù)大于0求出解集為遞增區(qū)間;令導(dǎo)函數(shù)小于0,求出解集為遞減區(qū)間.
解答:解:(1)因?yàn)閒'(x)=5x4+3ax2+b,…(2分)
由已知得:f'(1)=5+3a+b=0.f'(2)=24×5+22×3a+b=0,解得a=-
25
3
,b=20
. …(5分)
(2)由(1)知f'(x)=5x4+3ax2+b=5(x2-1)(x2-4)
=5(x+1)(x+2)(x-1)(x-2).…(7分)
當(dāng)x∈(-∞,-2)∪(-1,1)∪(2,+∞)時(shí),f'(x)>0;
當(dāng)x∈(-2,-1)∪(1,2)時(shí),f'(x)<0.…(9分)
因此f(x)的單調(diào)增區(qū)間是(-∞,-2),(-1,1),(2,+∞),f(x)的單調(diào)減區(qū)間是(-2,-1),(1,2).  …(10分)
點(diǎn)評(píng):本題考查函數(shù)的極值點(diǎn)處的導(dǎo)數(shù)值為0、考查函數(shù)的單調(diào)性與導(dǎo)函數(shù)的符號(hào)有關(guān):導(dǎo)函數(shù)大于0時(shí),函數(shù)遞增;導(dǎo)函數(shù)小于0時(shí),函數(shù)遞減.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線(xiàn)y=f(x)在與x軸交點(diǎn)處的切線(xiàn)為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿(mǎn)足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線(xiàn)y=f(x)在與x軸交點(diǎn)處的切線(xiàn)為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿(mǎn)足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案