如圖所示,P為平行四邊形ABCD所在平面外一點(diǎn),M、N分別為AB、PC的中點(diǎn),平面PAD∩平面PBC=l.
(1)求證:BC∥l.
(2)MN與平面PAD是否平行,試證明你的結(jié)論.
解:(1)∵四邊形ABCD是平行四邊形,∴BC∥AD. 又∵AD平面PAD,BC平面PAD, BC∥平面PAD. 又∵平面PBC∩平面PAD=l,BC平面PBC,∴BC∥l. (2)MN∥平面PAD. 證明:取PD的中點(diǎn)E,連結(jié)AE、NE. ∵NECD,而CDAB, ∴NEAM.∴四邊形AMNE為平行四邊形. ∴MN∥AE.∵AE平面PAD,且MN平面PAD,故MN∥平面PAD. 思路解析:(1)按線面平行的判定和性質(zhì); (2)MN與平面PAD是否平行,看能否在平面PAD中,找到一條直線平行于MN.一般的思路是“給中點(diǎn),再找中點(diǎn)”,即選取PD的中點(diǎn)E,連結(jié)AE、NE,則從四邊形MNEA中可求得. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:福建省福州市2012屆高三綜合練習(xí)數(shù)學(xué)文科試題 題型:044
已知四棱錐P-ABCD的三視圖如圖所示,△PBC為正三角形.
(Ⅰ)在平面PCD中作一條與底面ABCD平行的直線,并說(shuō)明理由;
(Ⅱ)求證:AC⊥平面PAB;
(Ⅲ)求三棱錐A-PBC的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分16分)
一走廊拐角下的橫截面如圖所示,已知內(nèi)壁FG和外壁BC都是半徑為1m的四分之一圓弧,AB,DC分別與圓弧BC相切于B、C兩點(diǎn),EF∥AB,GH∥CD,且兩組平行墻壁間的走廊寬度都是1m.
若水平放置的木棒MN的兩個(gè)端點(diǎn)M、N分別在外壁CD和AB上,且木棒與內(nèi)壁圓弧相切于點(diǎn)P。設(shè),試用表示木棒MN和長(zhǎng)度。
若一根水平放置的木棒能通過(guò)該走廊拐角處,求木棒長(zhǎng)度的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分16分)
一走廊拐角下的橫截面如圖所示,已知內(nèi)壁FG和外壁BC都是半徑為1m的四分之一圓弧,AB,DC分別與圓弧BC相切于B、C兩點(diǎn),EF∥AB,GH∥CD,且兩組平行墻壁間的走廊寬度都是1m.
若水平放置的木棒MN的兩個(gè)端點(diǎn)M、N分別在外壁CD和AB上,且木棒與內(nèi)壁圓弧相切于點(diǎn)P。設(shè),試用表示木棒MN和長(zhǎng)度。
若一根水平放置的木棒能通過(guò)該走廊拐角處,求木棒長(zhǎng)度的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
過(guò)平行六面體ABCD-A1B1C1D1任意兩條棱的中點(diǎn)作直線,其中與平面DBB1D1平行的直線共有( )
A.4條 B.6條
C.8條 D.12條
[答案] D
[解析] 如圖所示,設(shè)M、N、P、Q為所在邊的中點(diǎn),
則過(guò)這四個(gè)點(diǎn)中的任意兩點(diǎn)的直線都與面DBB1D1平行,這種情形共有6條;同理,經(jīng)過(guò)BC、CD、B1C1、C1D1四條棱的中點(diǎn),也有6條;故共有12條,故選D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com