函數(shù)f(x)=
log
1
2
(2x-1)
的定義域為( 。
A、(-∞,1]
B、[1,+∞)
C、(
1
2
,1]
D、(
1
2
,+∞)
考點:函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)成立的條件,即可求函數(shù)的定義域.
解答: 解:要使函數(shù)f(x)有意義,則log
1
2
(2x-1)≥0

即0<2x-1≤1,即1<2x≤2,
解得
1
2
<x≤1,
故函數(shù)的定義域是(
1
2
,1],
故選:C
點評:本題主要考查函數(shù)的定義域的求解,要求熟練掌握常見函數(shù)成立的條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1
2
x2-lnx的單調(diào)遞減區(qū)間是( 。
A、(1,+∞)
B、(0,+∞)
C、(0,1)
D、(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
2x-y+1≥0
x-2y-1≤0
x+y≤1
表示的平面區(qū)域為( 。
A、四邊形及內(nèi)部
B、等腰三角形及內(nèi)部
C、在第一象限內(nèi)的一個無界區(qū)域
D、不含第一象限內(nèi)的點的一個有界區(qū)域

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義域為R的偶函數(shù),且滿足f(x)=f(x+2),若f(x)在[-1,0]上是減函數(shù),那么f(x)在[2,3]上是( 。
A、增函數(shù)B、減函數(shù)
C、先增后減函數(shù)D、先減后增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若ax2+bx+c<0的解集為{x|x<-2或x>4},則對于函數(shù)f(x)=ax2+bx+c應(yīng)有( 。
A、f(5)<f(2)<f(-1)
B、f(5)<f(-1)<f(2)
C、f(-1)<f(2)<f(5)
D、f(2)<f(-1)<f(5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

k=5是直線l1:(k-3)x+(4-k)y+1=0與l2:2(k-3)x-2y+3=0平行的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)對任意兩個不相等實數(shù)a,b,總有
f(a)-f(b)
a-b
>0成立,則必有(  )
A、f(x)在R上是增函數(shù)
B、f(x)在R上是減函數(shù)
C、函數(shù)f(x)是先增加后減少
D、函數(shù)f(x)是先減少后增加

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知角α的終邊經(jīng)過點P(a,a-3),且cosα=
5
5
,則a=( 。
A、1
B、
9
2
C、1或
9
2
D、1或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某單位為了提高員工素質(zhì),舉辦了一場跳繩比賽,其中男員工12人,女員工18人,其成績編成如圖所示的莖葉圖(單位:分),分?jǐn)?shù)在175分以上(含175分)者定為“運動健將”,并給予特別獎勵,其他人員則給予“運動積極分子”稱號.
(1)若用分層抽樣的方法從“運動健將”和“運動積極分子”中抽取10人,然后再從這10人中選4人,求至少有1人是“運動健將”的概率;
(2)若從所有“運動健將”中選3名代表,求所選代表中女“運動健將”恰有2人的概率.

查看答案和解析>>

同步練習(xí)冊答案