如圖,在半徑為
7
的⊙O中,弦AB,CD相交于點(diǎn)P,PA=PB=2,PD=1,則圓心O到弦CD的距離為_(kāi)_____.
精英家教網(wǎng)
由相交弦定理得,AP×PB=CP×PD,
∴2×2=CP•1,
解得:CP=4,又PD=1,
∴CD=5,
又⊙O的半徑為
7
,
則圓心O到弦CD的距離為d=
r2-(
CD
2
)2
=
7-(
5
2
)2
=
3
2

故答案為:
3
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,圓柱的高為2,底面半徑為
7
,AE、DF是圓柱的兩條母線,過(guò)AD作圓柱的截面交下底面于BC.
(1)求證:BC∥EF;
(2)若四邊形ABCD是正方形,求證BC⊥BE;
(3)在(2)的條件下,求二面角A-BC-E的平面角的一個(gè)三角函數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖南)如圖,在半徑為
7
的⊙O中,弦AB,CD相交于點(diǎn)P,PA=PB=2,PD=1,則圓心O到弦CD的距離為
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖2-2-7所示,在半徑為1的⊙O中,引兩條互相垂直的直徑AE和BF,在上取點(diǎn)C,弦AC交BF于P,弦CB交AE于Q.證明四邊形APQB的面積是1.

圖2-2-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖3-3-7,在半徑為1的半圓內(nèi),放置一個(gè)邊長(zhǎng)為的正方形ABCD,向半圓內(nèi)任投一點(diǎn),該點(diǎn)落在正方形內(nèi)的概率為_(kāi)______________________________.

圖3-3-7

查看答案和解析>>

同步練習(xí)冊(cè)答案