過三點A(-4,0),B(0,2)和原點O(0,0)的圓的標(biāo)準(zhǔn)方程為
 
考點:圓的標(biāo)準(zhǔn)方程
專題:直線與圓
分析:由條件利用圓的弦的性質(zhì)求出圓心的坐標(biāo),可得圓的半徑,從而求得圓的標(biāo)準(zhǔn)方程.
解答: 解:由于所求的圓經(jīng)過三點A(-4,0),B(0,2)和原點O(0,0),
故圓心在直線x=-2上,又在y=1上,故圓心的坐標(biāo)為M(-2,1),
半徑為MO=
5
,故要求的圓的標(biāo)準(zhǔn)方程為(x+2)2+(y-1)2=5,
故答案:(x+2)2+(y-1)2=5.
點評:本題主要考查求圓的標(biāo)準(zhǔn)方程,關(guān)鍵在于利用圓的弦的性質(zhì)求出圓心的坐標(biāo),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是( 。
A、0∈N*
B、
2
∈Q
C、0∈∅
D、-2∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合P={(x,y)|(x-2cosθ)2+(y-2sinθ)2=1,0≤θ≤2π},集合Q={(x,y)|y≥
3
3
x},若P⊆Q,則θ的取值范圍是(  )
A、[
π
6
,
6
]
B、[
π
3
,π]
C、[
12
,
13π
12
]
D、[
π
2
,π]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直三棱柱ABC-A1B1C1,點P、Q分別在棱AA1和CC1上,AP=C1Q,則平面BPQ把三棱柱分成兩部分的體積比為( 。
A、2:1B、3:1
C、3:2D、4:3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的焦點F1(-2
2
,0)和F2(2
2
,0),長軸長6.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線y=x+2交橢圓C于A,B兩點,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線ax+2y+2=0與直線3x-y-2=0平行,則a的值為( 。
A、-6B、6C、-3D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
4
-
y2
b2
=1(b∈N*)的兩個焦點為F1,F(xiàn)2,O為坐標(biāo)原點,點P在雙曲線上,且|OP|<5,若|PF1|、|F1F2|、|PF1|成等比數(shù)列,則b2等于( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x+y≥a
x-y≤-1
且,z=x+ay的最小值為17,則a=( 。
A、-7B、5
C、-7或5D、-5或7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=f(
1
x
)•lgx+1,則f(10)=
 

查看答案和解析>>

同步練習(xí)冊答案