(12分)

如圖,正方形ABCD-A1B1C1D1中,E、F、G分別是AB,AD,AA1的中點,

(1)求證AC1⊥平面EFG,

(2)求異面直線EF與CC1所成的角。

                                      

 

【答案】

解:(1) ∵C1B1⊥面A1ABB1,  A1B⊥AB1 由三垂線定理得AC1⊥A1B

∵EF//AB, AC1⊥EF, 同理可證AC1⊥GF     

  ∵GF與EF是平面EFG內(nèi)的兩條相交直線,∴AC1⊥面EFG    

(2)  ∵E,F(xiàn)分別是AA1,AB的中點,∴EF//A1B

       ∵B1B//C1C      ∴∠A1BB1就是異面直線EF與C1C所成的角     

                      在RT⊿A1BB1中,∠ABB=45º

∴EF與CC所成的角為45º

 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2010•衡陽模擬)如圖,正方形ACDE所在的平面與平面ABC垂直,M是CE和AD的交點,AC⊥BC,且AC=BC.
(Ⅰ)求證:AM⊥平面EBC;
(Ⅱ)求直線AB與平面EBC所成的角的大;
(Ⅲ)求二面角A-EB-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方形ABCD的邊長為1,正方形ADEF所在平面與平面ABCD互相垂直,G,H是DF,F(xiàn)C的中點.
(1)求證:GH∥平面CDE;
(2)求證:BC⊥平面CDE;
(3)求三棱錐G-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•武進區(qū)模擬)如圖,正方形ABDE與等邊△ABC所在平面互相垂直,AB=2,F(xiàn)為BD中點,G為CE中點.
(1)求證:FG∥平面ABC;
(2)求三棱錐F-AEC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,Rt△ABC內(nèi)有一內(nèi)接正方形ADEF,它的兩條邊AD,AF分別在直角邊AB,AC上.設BC=a,∠ABC=θ.
(1)求△ABC的面積P和正方形的面積Q;
(2)當θ變化時,求
PQ
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠C=90°,AC=BC=2
2
,一個邊長為2的正方形由位置Ⅰ沿AB平行移動到位置Ⅱ停止,若移動的距離為x,正方形和△ABC的公共部分的面積為f(x),試求出f(x)的解析式,并求出最大值.

查看答案和解析>>

同步練習冊答案