分析 方法一;(1)取PA中點G,連結(jié)DG、FG,要證明EF∥平面PAD,我們可以證明EF與平面PAD中的直線AD平行,根據(jù)E、F分別是PB、PC的中點,利用中位線定理結(jié)合線面平行的判定定理,即可得到答案.
(2)根據(jù)線面垂直的和面面垂直的判斷定理即可證明.
方法二:(1)求出直線EF所在的向量,得到$\overrightarrow{EF}$=$\frac{1}{2}$($\overrightarrow{DP}$+$\overrightarrow{DA}$)=$\frac{1}{2}$$\overrightarrow{DP}$+$\frac{1}{2}$$\overrightarrow{DA}$,即可證明EF∥平面PAD.
(2)再求出平面內(nèi)兩條相交直線所在的向量,然后利用向量的數(shù)量積為0,根據(jù)線面垂直的判定定理得到線面垂直,即可證明平面AEF⊥平面PAB
(3)求出平面的法向量以及直線所在的向量,再利用向量的有關(guān)運算求出兩個向量的夾角,進而轉(zhuǎn)化為線面角,即可解決問題.
解答 證明:方法一:(1)取PA中點G,連結(jié)DG、FG.
∵F是PB的中點,
∴GF∥AB且GF=$\frac{1}{2}$AB,
又底面ABCD為矩形,E是DC中點,
∴DE∥AB且DE=$\frac{1}{2}$AB
∴GF∥DE且GF=DE,
∴四邊形DEFG為平行四邊形
∴EF∥DG
∵DG?平面PAD,EF?平面PAD,
∴EF∥平面PAD.
(2)∵PD⊥底面ABCD,AB?面ABCD
∴PD⊥AB
又底面ABCD為矩形
∴AD⊥AB
又PD∩AD=D
∴AB⊥平面PAD
∵DG?平面PAD
∴AB⊥DG
∵AD=PD,G為AP中點
∴DG⊥AP
又AB∩AP=A,
∴DG⊥平面PAB
又由(1)知EF∥DG
∴EF⊥平面PAB,
又EF?面AEF∴平面AEF⊥平面PAB.
證法二:(1)以D為坐標原點,DA、DC、DP所在直線分別為x軸、y軸、z軸,建立如圖所示空間直角坐標系.設(shè)AB=a.
∵AD=PD=2,
∴A(2,0,0),B(2,a,0),C(0,a,0),P(0,0,2),
∵E、F分別為CD,PB的中點
∴E(0,$\frac{a}{2}$,0),F(xiàn)(1,$\frac{a}{2}$,0).
∴$\overrightarrow{EF}=(1,0,1)$,
∵$\overrightarrow{DP}$+$\overrightarrow{DA}$=(0,0,2)+(2,0,0)=(2,0,2),
∴$\overrightarrow{EF}$=$\frac{1}{2}$($\overrightarrow{DP}$+$\overrightarrow{DA}$)=$\frac{1}{2}$$\overrightarrow{DP}$+$\frac{1}{2}$$\overrightarrow{DA}$,
故$\overrightarrow{EF}$、$\overrightarrow{DP}$、$\overrightarrow{DA}$共面,
又EF?平面PAD
∴EF∥平面PAD.
(2)由(1)知$\overrightarrow{EF}=(1,0,1)$,$\overrightarrow{AB}=(0,a,0)$,$\overrightarrow{AP}=(-2,0,2)$.
∴$\overrightarrow{EF}•\overrightarrow{AB}$=0,$\overrightarrow{EF}$•$\overrightarrow{AP}$=-2+0+2=0,
∴$\overrightarrow{EF}$⊥$\overrightarrow{AB}$,$\overrightarrow{EF}$⊥$\overrightarrow{AP}$,
又AB∩AP=A,
∴EF⊥平面PAB,
又EF?平面AEF,
∴平面AEF⊥平面PAB,
(3)AB=2$\sqrt{2}$由(1)知,
∴$\overrightarrow{AE}$=(-2,$\sqrt{2}$,0),$\overrightarrow{EF}$=(1,0,1)
設(shè)平面AEF的法向量$\overrightarrow n=(x,y,z)$,
則$\left\{\begin{array}{l}\overrightarrow n•\overrightarrow{AE}=0\\ \overrightarrow n•\overrightarrow{EF}=0\end{array}\right.即\left\{\begin{array}{l}-2x+\sqrt{2}y=0\\ x+z=0\end{array}\right.$,
令x=1,則y=$\sqrt{2}$,z=-1,
∴$\overrightarrow{n}$=(1,$\sqrt{2}$,-1),
又$\overrightarrow{AC}$=(-2,2$\sqrt{2}$,0),
∴cos<$\overrightarrow{AC}$,$\overrightarrow{n}$>=$\frac{-2+4+0}{2\sqrt{12}}$=$\frac{\sqrt{3}}{6}$,
∴sinθ=|cos<$\overrightarrow{AC}$,$\overrightarrow{n}$>|=$\frac{\sqrt{3}}{6}$.
點評 本題考查了本題考查的知識點是直線與平面平行的判定,面面垂直,直線與平面所成的角,解決此類問題的關(guān)鍵是熟練掌握幾何體的結(jié)構(gòu)特征,進而得到空間中點、線、面的位置關(guān)系,利于建立空間之間坐標系,利用向量的有關(guān)知識解決空間角與空間距離以及線面的位置關(guān)系等問題,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2016-2017學年安徽六安一中高一上國慶作業(yè)二數(shù)學試卷(解析版) 題型:解答題
已知函數(shù)是定義在上的奇函數(shù),且當時有.
①求的解析式;
②求的值域;
③若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源:2016-2017學年安徽六安一中高一上國慶作業(yè)二數(shù)學試卷(解析版) 題型:填空題
已知集合,且,,則的取值范圍是_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com