已知點P 在以坐標軸為對稱軸的橢圓上,點P 到兩個焦點的距離分別為,過P作焦點所在軸的垂線恰好過橢圓的一個焦點,求橢圓的方程.
解:設兩焦點為F1 ,F(xiàn)2 ,
有|PF1|=,|PF2|=
由橢圓的定義知2a=|PF1|+|PF2|=
∵|PF1|>|PF2|.
∴由題意知△PF1F2為直角三角形,
在△PF1F2中,sin∠PF1F2=


∴b2=a2-c2=
∵焦點可以在x軸上,也可以在y軸上.
∴橢圓的方程為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點P在以坐標軸為對稱軸的橢圓上,且P到兩焦點的距離分別為5、3,過P且與長軸垂直的直線恰過橢圓的一個焦點,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P是圓O:x2+y2=3上動點,以點P為切點的切線與x軸相交于點Q,直線OP與直線x=1相交于點N,若動點M滿足:
NM
OQ
,
QM
OQ
=0
,記動點M的軌跡為曲線C.
(1)求曲線C的方程;
(2)若過點F(2,0)的動直線與曲線C相交于不在坐標軸上的兩點A,B,設
AF
FB
,問在x軸上是否存在定點E,使得
OF
⊥(
EA
EB
)
?若存在,求出點E的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P在以坐標軸為對稱軸的橢圓上,點P到兩焦點的距離分別為
4
5
3
2
5
3
,過點P作長軸的垂線恰好過橢圓的一個焦點,則該橢圓的方程為
x2
5
+
y2
10
3
=1
y2
5
+
x2
10
3
=1
x2
5
+
y2
10
3
=1
y2
5
+
x2
10
3
=1

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學第一輪復習鞏固與練習:圓錐曲線方程(解析版) 題型:解答題

已知點P在以坐標軸為對稱軸的橢圓上,且P到兩焦點的距離分別為5、3,過P且與長軸垂直的直線恰過橢圓的一個焦點,求橢圓的方程.

查看答案和解析>>

同步練習冊答案