【題目】下列說(shuō)法正確的是( )
A.已知購(gòu)買(mǎi)一張彩票中獎(jiǎng)的概率為 ,則購(gòu)買(mǎi)1000張這種彩票一定能中獎(jiǎng)
B.互斥事件一定是對(duì)立事件
C.如圖,直線(xiàn)l是變量x和y的線(xiàn)性回歸方程,則變量x和y相關(guān)系數(shù)在﹣1到0之間
D.若樣本x1 , x2 , …xn的方差是4,則x1﹣1,x2﹣1,…xn﹣1的方差是3
【答案】C
【解析】解:對(duì)于A,購(gòu)買(mǎi)一張彩票中獎(jiǎng)的概率為 ,購(gòu)買(mǎi)1000張這種彩票可能中獎(jiǎng),也可能不中獎(jiǎng),A錯(cuò)誤; 對(duì)于B,互斥事件不一定是對(duì)立事件,對(duì)立事件一定是互斥事件,B錯(cuò)誤;
對(duì)于C,直線(xiàn)l是變量x和y的線(xiàn)性回歸方程,且變量x和y負(fù)相關(guān),其相關(guān)系數(shù)在﹣1到0之間,C正確;
對(duì)于D,樣本x1、x2、…、xn的方差為4,由一組數(shù)據(jù)中的各個(gè)數(shù)據(jù)都加上或減去同一個(gè)數(shù)后,
得到的新數(shù)據(jù)的方差與原數(shù)據(jù)的方差相等,所以數(shù)據(jù)x1﹣1,x2﹣1,…,xn﹣1的方差是4.D錯(cuò)誤.
故選:C.
【考點(diǎn)精析】利用命題的真假判斷與應(yīng)用對(duì)題目進(jìn)行判斷即可得到答案,需要熟知兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩個(gè)命題p:sinx+cosx>m,q:x2+mx+1>0.如果對(duì)任意x∈R,p與q有且僅有一個(gè)是真命題.求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=﹣x2+ax+1﹣lnx.
(1)當(dāng)a=3時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若f(x)在區(qū)間(0, )上是減函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(cosα,sinα), =(cosβ,sinβ), =({1,0).
(1)求向量 + 的長(zhǎng)度的最大值;
(2)設(shè)α= , <β< ,且 ⊥( ﹣ ),求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),隨機(jī)抽取了6個(gè)試銷(xiāo)售數(shù)據(jù),得到第i個(gè)銷(xiāo)售單價(jià)xi(單位:元)與銷(xiāo)售yi(單位:件)的數(shù)據(jù)資料,算得
(1)求回歸直線(xiàn)方程 ;
(2)預(yù)計(jì)在今后的銷(xiāo)售中,銷(xiāo)量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤(rùn)=銷(xiāo)售收入﹣成本) 附:回歸直線(xiàn)方程 中, = , = ﹣ ,其中 , 是樣本平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)在上具有單調(diào)性,求實(shí)數(shù)的取值范圍;
(Ⅱ)若在區(qū)間上,函數(shù)的圖象恒在圖象上方,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線(xiàn)x2﹣2y2=2的左、右兩個(gè)焦點(diǎn)為F1、F2 , 動(dòng)點(diǎn)P滿(mǎn)足|PF1|+|PF2|=4.
(1)求動(dòng)點(diǎn)P的軌跡E的方程;
(2)設(shè)過(guò)F2且不垂直于坐標(biāo)軸的動(dòng)直線(xiàn)l交軌跡E于A,B兩點(diǎn),問(wèn):線(xiàn)段OF2上是否存在一點(diǎn)D,使得以DA,DB為鄰邊的平行四邊形為菱形?作出判斷并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值;
(2)是否存在實(shí)數(shù),使得函數(shù)在上的最小值為1?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于命題:若O是線(xiàn)段AB上一點(diǎn),則有| | +| | = .將它類(lèi)比到平面的情形是:若O是△ABC內(nèi)一點(diǎn),則有S△OBC +S△OCA +S△OBA = ,將它類(lèi)比到空間情形應(yīng)該是:若O是四面體ABCD內(nèi)一點(diǎn),則有 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com