已知拋物線的焦點為,直線過點.

   (1)若點到直線的距離為,求直線的斜率;

   (2)設,為拋物線上兩點,且不與軸垂直,若線段的垂直平分線恰過點,求證:線段中點的橫坐標為定值.

解:(1)由條件知直線的斜率存在,

     ∴  設直線的方程為:, 即    …………………………2分

∴  焦點到直線的距離   ……4分        解得  ……6分

(2)設直線的方程為:,

    由   消去得:,…………………………8分

,,中點

∴  , ,  …………………………10分

∵  ,∴  ,………12分

即: ,∴  定值………………14分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013-2014學年浙江省高三上學期第三次統(tǒng)練理科數(shù)學試卷(解析版) 題型:解答題

已知拋物線的焦點為,準線為,點為拋物線C上的一點,且的外接圓圓心到準線的距離為

(I)求拋物線C的方程;

(II)若圓F的方程為,過點P作圓F的2條切線分別交軸于點,求面積的最小值時的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆海南省高二上期末考試文科數(shù)學試卷(解析版) 題型:選擇題

已知拋物線的焦點為,點,在拋物線上,且, 則有    (   )

A.                   B.

C.                  D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年浙江省臺州市高三調(diào)研考試理數(shù) 題型:選擇題

已知拋物線的焦點為關于原點的對稱點為軸的垂線交拋物線于兩點.有下列四個命題:①必為直角三角形;②不一定為直角三角形;③直線必與拋物線相切;④直線不一定與拋物線相切.其中正確的命題是

(A)①③             (B)①④             (C)②③                 (D)②④

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011年黑龍江省高二上學期期末考試數(shù)學理卷 題型:選擇題

已知拋物線的焦點為F,準線為,經(jīng)過F且斜率為的直線與拋物線在軸上方的部分相交于點A,且AK,垂足為K,則的面積是( 。

A 4     B        C       D 8

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆海南省高二年級第一學期期末考試理科數(shù)學卷 題型:選擇題

已知拋物線的焦點為,點在拋物線上,且,則有( 。

A.        B.

C.      D.

 

查看答案和解析>>

同步練習冊答案