分析 (1)由橢圓的定義可知:|MF|=m+$\frac{p}{2}$=4,及16=2pm,聯(lián)立即可求得p的值,求得拋物線C的標(biāo)準(zhǔn)方程;
(2)由題意設(shè)直線EA:x=ky-1,代入拋物線方程,根據(jù)△=0,求得斜率k,求得A點(diǎn)坐標(biāo),同理求得B點(diǎn)坐標(biāo),求得直線AB的方程,即可求得直線AB是否經(jīng)過(guò)焦點(diǎn)FF(0,2).
解答 解:(1)拋物線C的準(zhǔn)線方程為$y=-\frac{p}{2}$,
∴|MF|=m+$\frac{p}{2}$=4,
由M(4,m)在橢圓上,
∴16=2pm,
∴p2-8p+16=0,解得p=4,
∴拋物線C的標(biāo)準(zhǔn)方程為x2=8y…(4分)
(2)設(shè)EA:x=ky-1,聯(lián)立$\left\{{\begin{array}{l}{x=ky-1}\\{{x^2}=8y}\end{array}}\right.$,消去x得:k2y2-(2k+8)y+1=0,
∵EA與C相切,
∴△=(2k+8)2-4k2=0,解得k=-2,
∴${y_A}=\frac{1}{2},{x_A}=-2$,求得$A({-2,\frac{1}{2}})$,…(7分)
設(shè)EB:x=ty-1,聯(lián)立$\left\{{\begin{array}{l}{x=ty-1}\\{{x^2}+{{({y-2})}^2}=4}\end{array}}\right.$,消去x得:(t2+1)y2-(2t+4)y+1=0,
∵EB與圓F相切,
∴△=(2t+4)2-4(t2+1)=0,即$t=-\frac{3}{4}$,
∴${y_B}=\frac{4}{5},{x_B}=-\frac{8}{5}$,求得$B({-\frac{8}{5},\frac{4}{5}})$,…(10分)
∴直線AB的斜率${k_{AB}}=\frac{3}{4}$,
可得直線AB的方程為$y=\frac{3}{4}x+2$,經(jīng)過(guò)焦點(diǎn)F(0,2)…(12分)
點(diǎn)評(píng) 本題考查拋物線的標(biāo)準(zhǔn)方程,直線與拋物線的位置關(guān)系,直線的方程,考查轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com