A. | ②③④ | B. | ①②④ | C. | ①③④ | D. | ①②③ |
分析 ①水的部分始終呈棱柱狀;從棱柱的特征平面判斷即可;
②水面四邊形EFGH的面積不改變;可以通過EF 的變化EH不變判斷正誤;
③棱A1D1始終與水面EFGH平行;利用直線與平面平行的判斷定理,推出結(jié)論;
④當(dāng)E∈AA1時,AE+BF是定值.通過水的體積判斷即可.
解答 解:①水的部分始終呈棱柱狀;從棱柱的特征平面AA1B1B平行平面CC1D1D即可判斷①正確;
②水面四邊形EFGH的面積不改變;EF是可以變化的EH不變的,所以面積是改變的,②是不正確的;
③棱A1D1始終與水面EFGH平行;由直線與平面平行的判斷定理,可知A1D1∥EH,所以結(jié)論正確;
④當(dāng)E∈AA1時,AE+BF是定值.水的體積是定值,高不變,所以底面面積不變,所以正確.
故選:C.
點評 本題是基礎(chǔ)題,考查棱柱的結(jié)構(gòu)特征,直線與平面平行的判斷,棱柱的體積等知識,考查計算能力,邏輯推理能力.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 一個點 | B. | 橢圓 | ||
C. | 雙曲線 | D. | 以上選項都有可能 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若點P∈α,P∈β且α∩β=l,則P∈l | |
B. | 三點A,B,C能確定一個平面 | |
C. | 若直線a∩b=A,則直線a與b能夠確定一個平面 | |
D. | 若點A∈l,B∈l,且A∈α,B∈α,則l?α |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0) | B. | [1,+∞) | C. | (-1,1) | D. | [0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{13}{15}$ | B. | $\frac{2}{81}$ | C. | $\frac{13}{243}$ | D. | $\frac{80}{243}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com