過(guò)橢圓
x2
25
+
y2
9
=1
的右焦點(diǎn)F2并垂直于x軸的直線與橢圓的一個(gè)交點(diǎn)為B橢圓上不同的兩點(diǎn)A(x1,y1)B(x2,y2)滿(mǎn)足條件:|F2A||F2B||F2C|成等差數(shù)列,則弦AC的中垂線在y軸上的截距的范圍是( 。
分析:使用焦半徑公式求得x1+x2的值,可以設(shè)AC的中垂線方程,代入橢圓方程,使用韋達(dá)定理;也可以用“點(diǎn)差法”:記AC中點(diǎn)M(4,y0),將A、C兩點(diǎn)的坐標(biāo)代入橢圓方程后作差,求得AC的斜率表達(dá)式,表示出AC的中垂線方程,把x=0代入求得AC的中垂線在y軸上的截距,根據(jù)M在圓內(nèi)求得y0的范圍,進(jìn)而求得
16y0
9
的范圍即弦AC的中垂線在y軸上的截距的范圍.
解答:解:對(duì)|F2A|+|F2C|=
18
5

使用焦半徑公式得:5-
4
5
x1+5-
4
5
x2=
18
5
⇒x1+x2=8.
此后,可以設(shè)AC的中垂線方程,代入橢圓方程,使用韋達(dá)定理;也可以用“點(diǎn)差”:記AC中點(diǎn)M(4,y0),將A、C兩點(diǎn)的坐標(biāo)代入橢圓方程后作差得:
y1-y2
x1-x2
=-
9
25
x1+x2
y1+y2
,
∴kAC=-
9
25
4
y0

于是有:AC的中垂線的方程為:
y-y0=
25y0
36
(x-4),
當(dāng)x=0時(shí):y=-
16y0
9
,此即AC的中垂線在y軸上的截距,
∵M(jìn)(4,y0)在橢圓“內(nèi)”,
16
25
+
y
2
0
9
<1
,
得-
9
5
<y0
9
5
,
∴-
16
5
<-
16y0
9
16
5

故選:C.
點(diǎn)評(píng):本題主要考查了橢圓的應(yīng)用,直線與橢圓的位置關(guān)系的綜合.當(dāng)直線與圓錐曲線相交時(shí),涉及弦長(zhǎng)問(wèn)題,常用“韋達(dá)定理法”設(shè)而不求計(jì)算弦長(zhǎng)(即應(yīng)用弦長(zhǎng)公式);涉及弦長(zhǎng)的中點(diǎn)問(wèn)題,常用“點(diǎn)差法”設(shè)而不求,將弦所在直線的斜率、弦的中點(diǎn)坐標(biāo)聯(lián)系起來(lái),相互轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)過(guò)橢圓
x2
25
+
y2
9
=1
的右焦點(diǎn)F2并垂直于x軸的直線與橢圓的一個(gè)交點(diǎn)為B,橢圓上不同的兩點(diǎn)A(x1,y1),C(x2,y2)滿(mǎn)足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列,則弦AC的中垂線在y軸上的截距的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下四個(gè)關(guān)于圓錐曲線的命題中:
①設(shè)A、B為兩個(gè)定點(diǎn),k為非零常數(shù),|
PA
|-|
PB
|=k
,則動(dòng)點(diǎn)P的軌跡為雙曲線;
②以過(guò)拋物線的焦點(diǎn)的一條弦AB為直徑作圓,則該圓與拋物線的準(zhǔn)線相切;
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
④雙曲線
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1
有相同的焦點(diǎn).
其中真命題的序號(hào)為
 
(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下三個(gè)關(guān)于圓錐曲線的命題中:
①設(shè)A、B為兩個(gè)定點(diǎn),K為非零常數(shù),若|PA|-|PB|=K,則動(dòng)點(diǎn)P的軌跡是雙曲線.
②方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率
③雙曲線
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1有相同的焦點(diǎn).
④已知拋物線y2=2px,以過(guò)焦點(diǎn)的一條弦AB為直徑作圓,則此圓與準(zhǔn)線相切
其中真命題為
②③④
②③④
(寫(xiě)出所以真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•許昌三模)橢圓
x2
25
+
y2
16
=1的左,在焦點(diǎn)分別是F1,F(xiàn)2,弦AB過(guò)F1,若△ABF的面積是5,A,B兩點(diǎn)的坐標(biāo)分別是(X1,Y1),(X2,Y2),則|Y1-Y2|的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案