一個多面體的直觀圖及三視圖如圖所示(其中E、F分別是PB、AD的中點).

(Ⅰ)求證:EF⊥平面PBC;
(Ⅱ)求三棱錐B—AEF的體積。
(1)見解析(2)
(Ⅰ)取PC的中點G,連結(jié)EG,GD,則
由(Ⅰ)知FD⊥平面PDC,面PDC,所以FD⊥DG。
所以四邊形FEGD為矩形,因為G為等腰Rt△RPD斜邊PC的中點,
所以DG⊥PC,


 
又DG⊥GE,PC∩EG=E,

所以DG⊥平面PBC.
因為DG//EF,所以EF⊥平面PBC。
(Ⅱ) 
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐中,底面為矩形,底面,,,點在側(cè)棱上,。

(I)證明:是側(cè)棱的中點;
(Ⅱ)求二面角的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐中,⊿是等邊三角形,∠PAC=∠PBC="90" º.
(1)證明:AB⊥PC;
(2)若,且平面⊥平面,求三棱錐體積.
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知四個命題,其中正確的命題是         (   )
①若直線l //平面,則直線l的垂線必平行平面;
②若直線l與平面相交,則有且只有一個平面,經(jīng)過l與平面垂直;
③若一個三棱錐每兩個相鄰側(cè)面所成的角都相等,則這個三棱錐是正三棱錐;
④若四棱柱的任意兩條對角線都相交且互相平分,則這個四棱柱為平行六面體.
A.①B.②C.③D.④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題



一個空間幾何體的三視圖如圖所 示,其中分別是五點在直立、側(cè)立、水平三個投影面內(nèi)的投影,且在主視圖中,四邊形為正方形且;在左視圖中俯視圖中,
(Ⅰ)根據(jù)三視圖作出空間幾何體的直觀圖,并標明五點的位置;
(Ⅱ)在空間幾何體中,過點作平面的垂線,若垂足H在直線 上,求證:平面⊥平面;
(Ⅲ)在(Ⅱ)的條件下,求三棱錐的體積及其外接球的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示, 在三棱柱中, 底面,.

(1)若點分別為棱的中點,求證:平面
(2) 請根據(jù)下列要求設計切割和拼接方法:要求用平行于三棱柱的某一條側(cè)棱的平面去截此三棱柱,切開后的兩個幾何體再拼接成一個長方體. 簡單地寫出一種切割和拼接方法,并寫出拼接后的長方體的表面積(不必寫出計算過程).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


如圖,四棱錐G—ABCD中,ABCD是正方形,且邊長為2a,面ABCD⊥面ABG,AG=BG。
(1)畫出四棱錐G—ABCD的三視圖;
 
(2)在四棱錐G—ABCD中,過點B作平面
AGC的垂線,若垂足H在CG上,
求證:面AGD⊥面BGC
(3)在(2)的條件下,求三棱錐D—ACG的體積
及其外接球的表面積。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如右圖P、Q分別是A1B1、BB1的四等分點,M、N分別是D1C1、CC1的中點.沿M→N→Q→P截去一部分,截去的幾何體是什么?剩下的幾何體也是嗎?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一個正方體紙盒展開后如圖,在原正方體紙盒中有下列結(jié)論:

ABEF;
AB與CM成60°角;
EFMN是異面直線;
MNCD.
其中正確的是(  )
A.①②B.③④C.②③D.①③

查看答案和解析>>

同步練習冊答案