已知:橢圓C的中心在原點(diǎn),焦點(diǎn)在軸上,焦距為8,且經(jīng)過點(diǎn)(0,3)

(1) 求此橢圓的方程

若已知直線,問:橢圓C上是否存在一點(diǎn),使它到直線的距離最小?最小距離是多少?

 

【答案】

(1)                                      ……………4分

(2)由直線的方程與橢圓的方程可以知道,直線與橢圓不相交

設(shè)直線平行于直線,則直線的方程可以寫成     (1)

由方程組

消去,得                     (2)

令方程(2)的根的判別式,得   (3)

解方程(3)得,

由圖可知,當(dāng)時,直線與橢圓交點(diǎn)到直線的距離最近,此時直線的方程為

直線與直線間的距離

所以,最小距離是.

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在坐標(biāo)原點(diǎn),左頂點(diǎn)A(-2,0),離心率e=
1
2
,F(xiàn)為右焦點(diǎn),過焦點(diǎn)F的直線交橢圓C于P、Q兩點(diǎn)(不同于點(diǎn)A).
(1)求橢圓C的方程.
(2)當(dāng)|PQ|=
24
7
時,求直線PQ的方程.
(3)判斷△ABC能否成為等邊三角形,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,以兩個焦點(diǎn)和短軸的兩個端點(diǎn)為頂點(diǎn)的四邊形是一個面積為8的正方形(記為Q).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點(diǎn)P是橢圓C的左準(zhǔn)線與x軸的交點(diǎn),過點(diǎn)P的直線l與橢圓C相交于M,N兩點(diǎn),當(dāng)線段MN的中點(diǎn)落在正方形Q內(nèi)(包括邊界)時,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,它的一個頂點(diǎn)B恰好是拋物線y=
1
4
x2
的焦點(diǎn),離心率等于
2
2
.直線l與橢圓C交于M,N兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)橢圓C的右焦點(diǎn)F是否可以為△BMN的垂心?若可以,求出直線l的方程;若不可以,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•昌平區(qū)一模)已知橢圓C的中心在原點(diǎn),左焦點(diǎn)為(-
3
,0)
,離心率為
3
2
.設(shè)直線l與橢圓C有且只有一個公共點(diǎn)P,記點(diǎn)P在第一象限時直線l與x軸、y軸的交點(diǎn)分別為A、B,且向量
OM
=
OA
+
OB

求:
(I)橢圓C的方程;
(II)|
OM
|
的最小值及此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•延慶縣一模)已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,它的一個頂點(diǎn)B與拋物線x2=4y的焦點(diǎn)重合,離心率e=
2
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在直線l與橢圓交于M、N兩點(diǎn),且橢圓C的右焦點(diǎn)F恰為△BMN的垂心(三條高所在直線的交點(diǎn)),若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案