1.已知實(shí)數(shù)a<0,函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}+2a,\;x<1\\-x,x≥1\end{array}\right.$,若f(1-a)≥f(1+a),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-2]B.[-2,-1]C.[-1,0)D.(-∞,0)

分析 根據(jù)條件判斷1-a和1+a的范圍,結(jié)合分段函數(shù)的表達(dá)式進(jìn)行轉(zhuǎn)化求解即可.

解答 解:∵a<0,則1-a>1,1+a<1,
則f(1-a)≥f(1+a)等價(jià)為-(1-a)≥(1+a)2+2a,
即a2+3a+2≤0,
得-2≤a≤-1,
即實(shí)數(shù)a的取值范圍是[-2,-1],
故選:B

點(diǎn)評(píng) 本題主要考查不等式的求解,根據(jù)分段函數(shù)的表達(dá)式判斷變量1-a和1+a的范圍是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.(1)已知tanα=3,計(jì)算$\frac{3sinα+cosα}{sinα-2cosα}$;
(2)若cos(α+β)=$\frac{1}{5}$,cos(α-β)=$\frac{3}{5}$,求tanα•tanβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)定義域?yàn)閇0,+∞),當(dāng)x∈[0,1]時(shí),f(x)=sinπx,當(dāng)x∈[n,n+1]時(shí),f(x)=$\frac{f(x-n)}{{2}^{n}}$,其中n∈N,若函數(shù)f(x)的圖象與直線(xiàn)y=b有且僅有2016個(gè)交點(diǎn),則b的取值范圍是( 。
A.(0,1)B.($\frac{1}{{2}^{1007}}$,$\frac{1}{{2}^{1006}}$)C.($\frac{1}{{2}^{2017}}$,$\frac{1}{{2}^{2016}}$)D.($\frac{1}{{2}^{1008}}$,$\frac{1}{{2}^{1007}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在平面直角坐標(biāo)系中,點(diǎn)P為曲線(xiàn)C上任意一點(diǎn),且P到定點(diǎn)F(1,0)的距離比到y(tǒng)軸的距離多1.
(1)求曲線(xiàn)C的方程;
(2)點(diǎn)M為曲線(xiàn)C上一點(diǎn),過(guò)點(diǎn)M分別作傾斜角互補(bǔ)的直線(xiàn)MA,MB與曲線(xiàn)C分別交于A,B兩點(diǎn),過(guò)點(diǎn)F且與AB垂直的直線(xiàn)l與曲線(xiàn)C交于D,E兩點(diǎn),若|DE|=8,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.函數(shù)$f(x)=-|x|-\sqrt{x}+3$的零點(diǎn)所在區(qū)間為( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)a=log32,b=2-1,c=log56,則( 。
A.a<c<bB.b<c<aC.b<a<cD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.一般來(lái)說(shuō),一個(gè)人腳越長(zhǎng),他的身高就越高.現(xiàn)對(duì)10名成年人的腳長(zhǎng)x(單位:cm)與身高y(單位:cm)進(jìn)行測(cè)量,得如下數(shù)據(jù):
x20212223242526272829
y141146154160169176181188197203
作出散點(diǎn)圖后,發(fā)現(xiàn)散點(diǎn)在一條直線(xiàn)附近.經(jīng)計(jì)算得到一些數(shù)據(jù):
$\overline{x}$=24.5,$\overline{y}$=171.5,$\sum_{i=1}^{10}$(xi-$\overline{x}$)(yi-$\overline{y}$)=577.5,$\sum_{i=1}^{10}$(xi-$\overline{x}$)2=82.5
某刑偵人員在某案發(fā)現(xiàn)場(chǎng)發(fā)現(xiàn)一對(duì)裸腳印,量得每個(gè)腳印長(zhǎng)26.5cm,請(qǐng)你估計(jì)案發(fā)嫌疑人的身高為( 。
A.185B.185.5C.186D.186.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.我邊防局接到情報(bào),在海礁AB所在直線(xiàn)l的一側(cè)點(diǎn)M處有走私團(tuán)伙在進(jìn)行交易活動(dòng),邊防局迅速派出快艇前去搜捕.如圖,已知快艇出發(fā)位置在l的另一側(cè)碼頭P處,PA=8公里,PB=10公里,∠APB=60°.
(1)是否存在點(diǎn)M,使快艇沿航線(xiàn)P→A→M或P→B→M的路程相等.如存在,則建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求出點(diǎn)M的軌跡方程,且畫(huà)出軌跡的大致圖形;如不存在,請(qǐng)說(shuō)明理由.
(2)問(wèn)走私船在怎樣的區(qū)域上時(shí),路線(xiàn)P→A→M比路線(xiàn)P→B→M的路程短,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.某中學(xué)有6名愛(ài)好籃球的高三男生,現(xiàn)在考察他們的投籃水平與打球年限的關(guān)系,每人罰籃10次,其打球年限與投中球數(shù)如下表:$\left\{\begin{array}{l}{\widehat=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}}\\{\widehat{a}=\overline{y}-\widehat\overline{x}}\end{array}\right.$
(Ⅰ)求投中球數(shù)y關(guān)于打球年限x(x∈N,0≤x≤16)的線(xiàn)性回歸方程,
(Ⅱ)若第6名同學(xué)的打球年限為11年,試估計(jì)他的投中球數(shù)(精確到整數(shù)).
學(xué)生編號(hào)12345
打球年限x/年35679
投中球數(shù)y/個(gè)23345

查看答案和解析>>

同步練習(xí)冊(cè)答案