已知函數(shù)f(x)=mx-
m
x
,g(x)=2lnx

(1)當(dāng)m=2時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當(dāng)m=1時,證明方程f(x)=g(x)有且僅有一個實數(shù)根;
(3)若x∈(1,e]時,不等式f(x)-g(x)<2恒成立,求實數(shù)m的取值范圍.
(1)m=2時,f(x)=2x-
2
x
,f′(x)=2+
2
x2
,f′(1)=4
,
切點坐標(biāo)為(1,0),
∴切線方程為y=4x-4…(2分)
(2)m=1時,令h(x)=f(x)-g(x)=x-
1
x
-2lnx
,
h′(x)=1+
1
x2
-
2
x
=
(x-1)2
x2
≥0
,
∴h(x)在(0,+∞)上為增函數(shù).…(4分)
h(e)•h(
1
e
)=-(
1
e
-e+2)2<0
,
∴y=h(x)在(0,+∞)內(nèi)有且僅有一個零點
∴在(0,+∞)內(nèi)f(x)=g(x)有且僅有一個實數(shù)根     …(6分)
(或說明h(1)=0也可以)
(3)mx-
m
x
-2lnx<2
恒成立,即m(x2-1)<2x+2xlnx恒成立,
又x2-1>0,則當(dāng)x∈(1,e]時,m<
2x+2xlnx
x2-1
恒成立,
G(x)=
2x+2xlnx
x2-1
,只需m小于G(x)的最小值,
G′(x)=
-2(x2lnx+lnx+2)
(x2-1)2
,
∵1<x≤e,∴l(xiāng)nx>0,∴當(dāng)x∈(1,e]時G'(x)<0,
∴G(x)在(1,e]上單調(diào)遞減,
∴G(x)在(1,e]的最小值為G(e)=
4e
e2-1
,
則m的取值范圍是(-∞,
4e
e2-1
)
.            …(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=m-
22x+1
是R上的奇函數(shù),
(1)求m的值;
(2)先判斷f(x)的單調(diào)性,再證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湘潭三模)已知函數(shù)f(x)=(m+
1
m
)lnx+
1
x
-x
,(其中常數(shù)m>0)
(1)當(dāng)m=2時,求f(x)的極大值;
(2)試討論f(x)在區(qū)間(0,1)上的單調(diào)性;
(3)當(dāng)m∈[3,+∞)時,曲線y=f(x)上總存在相異兩點P(x1,f(x1))、Q(x2,f(x2)),使得曲線y=f(x)在點P、Q處的切線互相平行,求x1+x2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=m-
1
1+ax
(a>0且a≠1,m∈R)
是奇函數(shù).
(1)求m的值.
(2)當(dāng)a=2時,解不等式0<f(x2-x-2)<
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
m•3x-1
3x+1
是定義在實數(shù)集R上的奇函數(shù).
(1)求實數(shù)m的值;
(2)若x滿足不等式4x+
1
2
-5•2x+1+8≤0
,求此時f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=m(sinx+cosx)4+
1
2
cos4x
x∈[0,
π
2
]
時有最大值為
7
2
,則實數(shù)m的值為
 

查看答案和解析>>

同步練習(xí)冊答案