如圖所示,在矩形ABCD中,,AD=1,沿對角線BD將△BCD折起,當點C新位置C′時滿足

(1)求證:平面ABC′⊥平面ABD;

(2)求二面角C′-BD-A的大。

答案:
解析:

證明:(1)在△ABC′中,∵,C′B=1,

,

從而∠BC′A=90°,BC′⊥AC′,又BC′⊥DC′,

∴BC′⊥平面ADC′,

,

∴平面ABC′⊥平面ABD;

解:(2)作C′P⊥AB,則C′P⊥平面ABD,過P作PQ⊥BD,連C′Q,則C′Q⊥BD.

∴∠C′QP為二面角C′-BD-A的平面角.

在Rt△ABC′中,,

在Rt△ABD中,

AD=1,,∠ABD=30°,

,


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

19、如圖所示,在矩形ABCD中,AB=4,AD=2,E是CD的中點,O為AE的中點,以AE為折痕將△ADE向上折起,使D到P點位置,且PC=PB,F(xiàn)是BP的中點.
(Ⅰ)求證:CF∥面APE;
(Ⅱ)求證:PO⊥面ABCE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

19、如圖所示,在矩形ABCD中,AB=4,AD=2,E是CD的中點,O為AE的中點,F(xiàn)是AB的中點.以AE為折痕將△ADE向上折起,使面DAE⊥面ABCE.
(1)求證:OF∥面BDE;
(2)求證:AD⊥面BDE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在矩形ABCD中,AB=4,AD=2,E是CD的中點,O為AE的中點,以AE為折痕將
△ADE向上折起,使D到P,且PC=PB
(1)求證:PO⊥面ABCE.(2)求AC與面PAB所成角θ的正弦值.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在矩形ABCD中,AB=4cm,BC=2cm,在圖形上隨機撒一粒黃豆,則黃豆落到圓上的概率是
π
8
π
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在矩形ABCD中,已知AB=a,BC=b.a(chǎn)≤3b,在AB,AD,CD,CB上分別截取AE,AH,CG,CF,且都等于x,則四邊形EFGH面積的最大值為
 

查看答案和解析>>

同步練習冊答案