已知等比數(shù)列{an}的所有項均為正數(shù),首項a1=1,且a4,3a3,a5成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{an+1-λan}的前n項和為Sn,若Sn=2n-1(n∈N*),求實數(shù)λ的值.
(1)an=2n-1(n∈N*).(2)λ=1
【解析】(1)設(shè)數(shù)列{an}的公比為q,由條件可知q3,3q2,q4成等差數(shù)列,∴6q2=q3+q4,∴6=q+q2,
解得q=-3或q=2,∵q>0,∴q=2,
∴數(shù)列{an}的通項公式為an=2n-1(n∈N*).
(2)記bn=an+1-λan,則bn=2n-λ·2n-1=(2-λ)2n-1,
若λ=2,則bn=0,Sn=0,不符合條件;
若λ≠2,則=2,數(shù)列{bn}為等比數(shù)列,首項為2-λ,公比為2,
此時Sn= (1-2n)=(2-λ)(2n-1),
∵Sn=2n-1(n∈N*),∴λ=1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題6第2課時練習(xí)卷(解析版) 題型:選擇題
設(shè)X為隨機(jī)變量,X~B ,若隨機(jī)變量X的數(shù)學(xué)期望E(X)=2,則P(X=2)等于( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題4第3課時練習(xí)卷(解析版) 題型:解答題
如圖四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1=.
(1)證明:平面A1BD∥平面CD1B1;
(2)求三棱柱ABD-A1B1D1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題4第1課時練習(xí)卷(解析版) 題型:填空題
若一個圓錐的側(cè)面展開圖是面積為2π的半圓面,則該圓錐的體積為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題4第1課時練習(xí)卷(解析版) 題型:選擇題
一個簡單幾何體的主視圖、俯視圖如圖所示,則其左視圖不可能為( )
A.正方形 B.圓
C.等腰三角形 D.直角梯形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題3第2課時練習(xí)卷(解析版) 題型:填空題
已知等比數(shù)列{an}是遞增數(shù)列,Sn是{an}的前n項和.若a1,a3是方程x2-5x+4=0的兩個根,則S6=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題3第1課時練習(xí)卷(解析版) 題型:解答題
根據(jù)如圖所示的程序框圖,將輸出的x,y值依次分別記為x1,x2,…,xk,…;y1,y2,…,yk,….
(1)分別求數(shù)列{xk}和{yk}的通項公式;
(2)令zk=xkyk,求數(shù)列{zk}的前k項和Tk,其中k∈N*,k≤2 007.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題2第3課時練習(xí)卷(解析版) 題型:填空題
在△ABC中,AB=10,AC=6,O為BC的垂直平分線上一點,則·=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題1第6課時練習(xí)卷(解析版) 題型:解答題
已知a∈R,函數(shù)f(x)=4x3-2ax+a.
(1)求f(x)的單調(diào)區(qū)間;
(2)證明:當(dāng)0≤x≤1時,f(x)+|2-a|>0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com