長(zhǎng)方體ABCD—A1B1C1D1中,AA1=AB=2,AD=1, 點(diǎn)E、F、G分別是DD1、AB、CC1的中點(diǎn),則異面直線A1E與GF所成的角是(   )

A.           B.          C.           D.
D

試題分析:連接B1G,則,所以就是異面直線A1E與GF所成的角,連接B1F,
中,,所以,
所以.
點(diǎn)評(píng):找或做出異面直線所成的角,根據(jù)異面直線所成的角的定義要轉(zhuǎn)化為求兩條相交直線所成的角來解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,P-ABC是底面邊長(zhǎng)為1的正三棱錐,D、E、F分別為棱長(zhǎng)PA、PB、PC上的點(diǎn), 截面DEF∥底面ABC, 且棱臺(tái)DEF-ABC與棱錐P-ABC的棱長(zhǎng)和相等.(棱長(zhǎng)和是指多面體中所有棱的長(zhǎng)度之和)

(1)求證:P-ABC為正四面體;
(2)棱PA上是否存在一點(diǎn)M,使得BM與面ABC所成的角為45°?若存在,求出點(diǎn)M的位置;若不存在,請(qǐng)說明理由。
(3)設(shè)棱臺(tái)DEF-ABC的體積為V=, 是否存在體積為V且各棱長(zhǎng)均相等的平行六面體,使得它與棱臺(tái)DEF-ABC有相同的棱長(zhǎng)和,并且該平行六面體的一條側(cè)棱與底面兩條棱所成的角均為60°? 若存在,請(qǐng)具體構(gòu)造出這樣的一個(gè)平行六面體,并給出證明;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共12分)如圖,四邊形是矩形,平面,上一點(diǎn),平面,點(diǎn),分別是,的中點(diǎn).

(Ⅰ)求證:平面;
(Ⅱ)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

三棱錐中,底面是邊長(zhǎng)為2的正三角形, ⊥底面,且,則此三棱錐外接球的半徑為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)如圖,等邊與直角梯形垂直,,,
,.若分別為的中點(diǎn).

(1)求的值; (2)求面與面所成的二面角大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正三棱柱的各棱長(zhǎng)都是2,E,F(xiàn)分別是的中點(diǎn),則EF的長(zhǎng)是(  )
A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖是一個(gè)幾何體的三視圖,根據(jù)圖中數(shù)據(jù),可得該幾何體的表面積是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若一個(gè)底面是正三角形的三棱柱的正視圖如圖所示,則其側(cè)面積等于 (      )
A.B.2 C.D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

棱長(zhǎng)為2的正四面體ABCD(如圖),其正視圖是底邊長(zhǎng)為2的等腰三角形,則其側(cè)視圖面積是___

A

 

查看答案和解析>>

同步練習(xí)冊(cè)答案