精英家教網 > 高中數學 > 題目詳情
(2010•宿州三模)已知函數f(x)=x2-2alnx,g(x)=
13
x3-x2

(1)討論函數f(x)的單調區(qū)間;
(2)若f(x)≥g'(x)對于任意的x∈(1,+∞)恒成立,求實數a的取值范圍.
分析:(1)先求導函數f′(x)=2x-
2a
x
=
2x2-2a
x
,再進行分類討論:a≤0,a>0時,利用f'(x)>0確定函數f(x)的單調增區(qū)間;f'(x)<0確定函數f(x)的單調減區(qū)間;
(2)求導函數g'(x)=x2-2x,從而f(x)≥g'(x)即alnx-x≤0,進一步轉化為a≤
x
lnx
在(1,+∞)上恒成立,利用導數可求右邊函數的最小值,從而確定實數a的取值范圍.
解答:解:(1)f′(x)=2x-
2a
x
=
2x2-2a
x
,…(2分)
當a≤0時,f′(x)>0,∴f(x)在(0,+∞)上為增函數;
當a>0時,令f′(x)>0得x>
a
,∴f(x)在(
a
,+∞)
上為增函數;
令f′(x)<0得0<x<
a
,∴f(x)在(0,
a
)
上為減函數,
綜上:當a≤0時,f(x)的增區(qū)間為(0,+∞),無減區(qū)間;
當a>0時,f(x)的增區(qū)間為(
a
,+∞)
,減區(qū)間為(0,
a
)
.…(6分)
(2)∵g′(x)=x2-2x,∴f(x)≥g′(x)即alnx-x≤0,
由題意,a≤
x
lnx
在(1,+∞)上恒成立,…(8分)
h(x)=
x
lnx
,則h′(x)=
lnx-1
ln2x
,
令h′(x)>0得x>e,∴h(x)在(e,+∞)上為增函數;
令h′(x)<0得0<x<e,∴h(x)在(0,e)上為減函數;
h(x)=
x
lnx
在x=e取最小值,∴a≤h(e)=e,∴a≤e.…(12分)
(或令h(x)=alnx-x,即h(x)max≤0,分類討論即可)
點評:本題以函數為載體,考查導數的運用,考查函數的單調性及恒成立問題的處理,關鍵是分離參數,借助于函數的最值,求得參數的范圍.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2010•宿州三模)已知二次曲線
x2
4
+
y2
m
=1,則當m∈[-2,-1]
時,該曲線的離心率的取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•宿州三模)若將函數f(x)=Asin(ωx+
π
6
)
(A>0,ω>0)的圖象向左平
π
6
移個單位后得到的圖象關于原點對稱,則ω的值可能為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•宿州三模)曲線y=
2
cosx
-
π
4
x=
π
4
處的切線方程是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•宿州三模)設不等式組
x-y+5≥0
x+y≥a
0≤x≤2
所表示的平面區(qū)域是一個三角形,則此平面區(qū)域面積的最大值
4
4

查看答案和解析>>

同步練習冊答案