已知函數(shù)。
(1)當(dāng)時(shí),求曲線在處切線的斜率;
(2)求的單調(diào)區(qū)間;
(3)當(dāng)時(shí),求在區(qū)間上的最小值。
(1);(2)當(dāng)時(shí),的單調(diào)遞減區(qū)間為;當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為。(3);
【解析】
試題分析:(1)把代入函數(shù)解析式中,求出函數(shù)的導(dǎo)數(shù),把代入導(dǎo)函數(shù)中去即得切線的斜率;(2)求出導(dǎo)函數(shù),導(dǎo)函數(shù)中含有參數(shù),要對(duì)進(jìn)行討論,然后令導(dǎo)函數(shù)大于0得增區(qū)間,令導(dǎo)函數(shù)小于0得減區(qū)間;(3)利用(2)中求得的單調(diào)區(qū)間來(lái)求函數(shù)的最值即可,但要對(duì)在范圍內(nèi)進(jìn)行討論;
試題解析:【解析】
(1)當(dāng)時(shí),, 2分
故曲線在處切線的斜率為。 4分
(2)。 6分
①當(dāng)時(shí),由于,故。
所以, 的單調(diào)遞減區(qū)間為。 8分
②當(dāng)時(shí),由,得。
在區(qū)間上,,在區(qū)間上,。
所以,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為。 10分
綜上,當(dāng)時(shí),的單調(diào)遞減區(qū)間為;當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為。 11分
(3)根據(jù)(2)得到的結(jié)論,當(dāng),即時(shí),在區(qū)間上的最小值為,。 13分
當(dāng),即時(shí),在區(qū)間上的最小值為,。
綜上,當(dāng)時(shí),在區(qū)間上的最小值為,當(dāng),在區(qū)間上的最小值為。 14分
考點(diǎn):1、函數(shù)導(dǎo)數(shù)的幾何意義;2、函數(shù)的單調(diào)性及最值問(wèn)題;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年河南省富洲部高二上學(xué)期9月考試數(shù)學(xué)試卷(解析版) 題型:填空題
已知正數(shù)x,y滿足x+y++=10,則x+y的最大值為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年河南省洛陽(yáng)市高一10月月考數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)全集,,,則 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆北京市西城區(qū)高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
函數(shù)的圖象如圖所示,且在與處取得極值,給出下列判斷:
①;
②;
③函數(shù)在區(qū)間上是增函數(shù)。
其中正確的判斷是( )
A.①③ B.② C.②③ D.①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆北京市西城區(qū)高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
計(jì)算定積分=( )
A.2 B.1 C.4 D.-2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆北京市西城區(qū)高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知函數(shù)則方程的解為_(kāi)___________;若關(guān)于x的方有兩個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)k的取值范圍是____________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年河南省西區(qū)高一9月月考數(shù)學(xué)試卷(解析版) 題型:選擇題
是定義在上是減函數(shù),則的取值范圍
是( )
A. [B. []C. (D. (]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年河南省高二10月月考數(shù)學(xué)試卷(解析版) 題型:解答題
在中,角的對(duì)邊分別為,且成等差數(shù)列
(1)若,求的面積
(2)若成等比數(shù)列,試判斷的形狀
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年河南省高二上學(xué)期月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)設(shè)是公比不為1的等比數(shù)列,其前項(xiàng)和為,且成等差數(shù)列。
(1)求數(shù)列的公比;
(2)證明:對(duì)任意成等差數(shù)列
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com