【題目】某市據(jù)實(shí)際情況主要采取以下四種扶貧方式:第一,以工代賑方式,指政府投資建設(shè)基礎(chǔ)設(shè)施工程,組織貧困地區(qū)群眾參加工程建設(shè)并獲得勞務(wù)報(bào)酬,第二,整村推進(jìn)方式指以貧困村為具體幫扶對象,幫扶對口到村,資金安排到村,扶貧效益到戶,第三,科技扶貧方式,指組織科技人員深入貧困鄉(xiāng)村實(shí)地指導(dǎo)、技術(shù)培訓(xùn)等傳授科技知識,第四,移民搬遷方式,指對目前極少數(shù)居住在生存條件惡劣、自然資源貧乏地區(qū)的特困人口,實(shí)行自愿移民,該市為了2020年更好的完成精準(zhǔn)扶貧各項(xiàng)任務(wù),2020年初在全市貧困戶(分一般貧困戶和五特戶兩類)中隨機(jī)抽取了5000戶就目前的主要四種扶貧方式行了問卷調(diào)查,支持每種扶貧方式的結(jié)果如表:

調(diào)查的貧困戶

支持以工代賑戶數(shù)

支持整村推進(jìn)戶數(shù)

支持科技扶貧戶數(shù)

支持移民搬遷戶數(shù)

一般貧困戶

1200

1600

200

五特戶(五保戶和特困戶)

100

100

已知在被調(diào)查的5000戶中隨機(jī)抽取一戶支持整村推進(jìn)的概率為0.36.

(Ⅰ)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的貧困戶中抽取50戶進(jìn)行深入訪談,問應(yīng)在支持科技扶貧戶數(shù)中抽取多少戶?

(Ⅱ)雖然五特戶在全市的貧困戶所占比例不大,但本次調(diào)查要有意義,其中這次調(diào)查的五特戶戶數(shù)不能低于被調(diào)查總戶數(shù)的9.2%,已知,求本次調(diào)查有意義的概率是多少?

【答案】(Ⅰ)16戶(Ⅱ)

【解析】

5000戶中隨機(jī)抽取一戶支持整村推進(jìn)的概率為0.36.可求得支持整村推進(jìn)的戶數(shù)1800,可知,進(jìn)而求得,即可求得結(jié)果;

)因?yàn)?/span>,,列出所有符合的結(jié)果共13,由于五特戶戶數(shù)不能低于被調(diào)查總戶數(shù)的9.2%,,,有意義,找到符合題意的結(jié)果即可求出概率.

解:(支持整村推進(jìn)戶數(shù)為.

.

應(yīng)在支持科技扶貧戶數(shù)中抽取的戶數(shù)為:(戶).

五特戶戶數(shù)不能低于被調(diào)查總戶數(shù)的9.2%

有意義,又,,情況列舉如下:

,13種情況.

本次調(diào)查有意義的概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人在政治、歷史、地理、物理、化學(xué)、生物、技術(shù)7門學(xué)科中任選3門.若同學(xué)甲必選物理,則下列說法正確的是(

A.甲、乙、丙三人至少一人選化學(xué)與全選化學(xué)是對立事件

B.甲的不同的選法種數(shù)為15

C.已知乙同學(xué)選了物理,乙同學(xué)選技術(shù)的概率是

D.乙、丙兩名同學(xué)都選物理的概率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了響應(yīng)國家號召,促進(jìn)垃圾分類,某校組織了高三年級學(xué)生參與了垃圾分類,從我做起的知識問卷作答隨機(jī)抽出男女各20名同學(xué)的問卷進(jìn)行打分,作出如圖所示的莖葉圖,成績大于70分的為合格”.

)由以上數(shù)據(jù)繪制成2×2聯(lián)表,是否有95%以上的把握認(rèn)為性別問卷結(jié)果有關(guān)?

總計(jì)

合格

不合格

總計(jì)

)從上述樣本中,成績在60分以下(不含60分)的男女學(xué)生問卷中任意選2個(gè),記來自男生的個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱的側(cè)棱垂直于底面,且,,,,是棱的中點(diǎn).

1)證明:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)|3x2|.

(1)解不等式f(x)<4|x1|;

(2)已知mn1(mn>0),若|xa|f(x)≤(a>0)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,,若橢圓經(jīng)過點(diǎn),且△PF1F2的面積為2

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)斜率為1的直線與以原點(diǎn)為圓心,半徑為的圓交于A,B兩點(diǎn),與橢圓C交于C,D兩點(diǎn),且),當(dāng)取得最小值時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線上一點(diǎn)到其焦點(diǎn)下的距離為10.

(1)求拋物線C的方程;

(2)設(shè)過焦點(diǎn)F的的直線與拋物線C交于兩點(diǎn),且拋物線在兩點(diǎn)處的切線分別交x軸于兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)若是函數(shù)的極值點(diǎn),求的極小值;

2)若對任意的實(shí)數(shù)a,函數(shù)上總有零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案