【題目】已知函數(shù)在區(qū)間上有最大值和最小值,設(shè).
(1)求,的值;
(2)若不等式在上有解,求實(shí)數(shù)的取值范圍;
(3)若有三個不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
【答案】(1),;(2);(3).
【解析】
(1)由函數(shù),所以在區(qū)間上是增函數(shù),故,,由此解得,的值;
(2)由(1)可知,所以令,不等式可化為,,求出的最大值,從而求得取值范圍;
(3)令,則原方程有三個不同的實(shí)數(shù)解轉(zhuǎn)化為有兩個不同的實(shí)數(shù)解,,其中或,,然后運(yùn)用“三個二次”即:二次函數(shù)、二次不等式、二次方程之間的關(guān)系列出式子求解得答案.
(1)函數(shù)
因?yàn)?/span>,所以在區(qū)間上是增函數(shù),故 ,解得,;
(2)由已知可得,所以令,不等式可化為,因,故,故在上能成立,
記,因?yàn)?/span> ,故,
所以的取值范圍是;
(3)令 (),圖象如下:
則方程變?yōu)椋?/span>,
化簡得:,
設(shè)方程有兩個不同的實(shí)數(shù)解,,
其中或,,記,
則有: ①或 ②,
解①得,;②無解,
實(shí)數(shù)的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)的某種產(chǎn)品被檢測出其中一項(xiàng)質(zhì)量指標(biāo)存在問題.該企業(yè)為了檢查生產(chǎn)該產(chǎn)品的甲,乙兩條流水線的生產(chǎn)情況,隨機(jī)地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取50件產(chǎn)品作為樣本,測出它們的這一項(xiàng)質(zhì)量指標(biāo)值.若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品.表1是甲流水線樣本的頻數(shù)分布表,圖1是乙流水線樣本的頻率分布直方圖.
(Ⅰ)根據(jù)圖1,估計乙流水線生產(chǎn)產(chǎn)品該質(zhì)量指標(biāo)值的中位數(shù);
(Ⅱ)若將頻率視為概率,某個月內(nèi)甲,乙兩條流水線均生產(chǎn)了5000件產(chǎn)品,則甲,乙兩條流水線分別生產(chǎn)出不合格品約多少件?
(Ⅲ)根據(jù)已知條件完成下面列聯(lián)表,并回答是否有85%的把握認(rèn)為“該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲,乙兩條流水線的選擇有關(guān)”?
甲生產(chǎn)線 | 乙生產(chǎn)線 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
附:(其中為樣本容量)
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若對于任意x∈R都有f(x)+2f(-x)=3cosx-sinx,則函數(shù)f(2x)圖象的對稱中心為( )
A. (kπ-,0)(k∈Z) B. (-,0)(k∈Z)
C. (kπ-,0)(k∈Z) D. (-,0)(k∈Z)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為為參數(shù),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為.
求直線l的普通方程及曲線C的直角坐標(biāo)方程;
若直線l與曲線C交于A,B兩點(diǎn),求線段AB的中點(diǎn)P到坐標(biāo)原點(diǎn)O的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近期,某超市針對一款飲料推出刷臉支付活動,活動設(shè)置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用刷臉支付.該超市統(tǒng)計了活動剛推出一周內(nèi)每一天使用刷臉支付的人次,用表示活動推出的天數(shù),表示每天使用刷臉支付的人次,統(tǒng)計數(shù)據(jù)如下表所示:
(1)在推廣期內(nèi),與(均為大于零的常數(shù))哪一個適宜作為刷臉支付的人次關(guān)于活動推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由);
(2)根據(jù)(1)的判斷結(jié)果及表中的數(shù)據(jù),求關(guān)于的回歸方程,并預(yù)測活動推出第天使用刷臉支付的人次;
(3)已知一瓶該飲料的售價為元,顧客的支付方式有三種:現(xiàn)金支付、掃碼支付和刷臉支付,其中有使用現(xiàn)金支付,使用現(xiàn)金支付的顧客無優(yōu)惠;有使用掃碼支付,使用掃碼支付享受折優(yōu)惠;有使用刷臉支付,根據(jù)統(tǒng)計結(jié)果得知,使用刷臉支付的顧客,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為.根據(jù)所給數(shù)據(jù)估計購買一瓶該飲料的平均花費(fèi).
參考數(shù)據(jù):其中,
參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計公式分別為:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一組織一次數(shù)學(xué)競賽,選取50名學(xué)生成績(百分制,均為整數(shù)),根據(jù)這50名學(xué)生的成績,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為.
(1)求頻率分布直方圖中a的值;
(2)估計選取的50名學(xué)生在這次數(shù)學(xué)競賽中的平均成績;
(3)用分層抽樣的方法在分?jǐn)?shù)段為的學(xué)生成績中抽取一個樣本容量為5的樣本,
再隨機(jī)抽取2人的成績,求恰有一人成績在分?jǐn)?shù)段內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列中,若,則稱數(shù)列為“凸數(shù)列”.已知數(shù)列為“凸數(shù)列”,且,則數(shù)列的前2019項(xiàng)和為( )
A. 1 B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過的包裹收費(fèi)10元;重量超過的包裹,除收費(fèi)10元之外,超過的部分,每超出(不足,按計算)需要再收費(fèi)5元.該公司近60天每天攬件數(shù)量的頻率分布直方圖如下圖所示(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表).
(1)求這60天每天包裹數(shù)量的平均值和中位數(shù);
(2)該公司從收取的每件快遞的費(fèi)用中抽取5元作為前臺工作人員的工資和公司利潤,剩余的作為其他費(fèi)用.已知公司前臺有工作人員3人,每人每天工資100元,以樣本估計總體,試估計該公司每天的利潤有多少元?
(3)小明打算將四件禮物隨機(jī)分成兩個包裹寄出,且每個包裹重量都不超過,求他支付的快遞費(fèi)為45元的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com