精英家教網 > 高中數學 > 題目詳情
已知函數
(1)求函數f(x)的對稱軸方程;
(2)當時,若函數g(x)=f(x)+m有零點,求m的范圍;
(3)若,,求sin(2x)的值.
【答案】分析:利用輔助角公式可得f(x)=sin2x+cos2x+2=2sin(2x+)+2
(1)令2x+可得對稱軸方程為:
(2)由可得2x+,從而可得∴
而函數g(x)=f(x)+m有零點,即f(x)=-m有解,可轉化為y=f(x)與y=-m有交點,結合圖象可得-m,
m
(3)由已知可得,結合可求,而利用兩角差的正弦公式可求
解答:解:(1)∵f(x)=sin2x+cos2x+2=2sin(2x+)+2(3分)
令2x+可得:,
∴對稱軸方程為:,.(4分)
(2)∵   2x+

(7分)
∵函數g(x)=f(x)+m有零點,即f(x)=-m有解.(8分)
即-m,m.(9分)
(3)即2sin(+2=即sin(=(10分)


又∵
(11分)
(12分)
(13分)
=
=
=(15分)
點評:本題主要考查 了輔助角公式asix+bcosx=的應用,正弦函數的對稱軸的求解,方程與函數的相互轉化,利用拆角求解三角函數值,是一道綜合性比較好的試題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的圖象和y軸交于(0,1)且y軸右側的第一個最大值、最小值點分別為P(x0,2)和Q(x0+3π,-2).
(1)求函數y=f(x)的解析式及x0;
(2)求函數y=f(x)的單調遞減區(qū)間;
(3)如果將y=f(x)圖象上所有點的橫坐標縮短到原來的
1
3
(縱坐標不變),然后再將所得圖象沿x軸負方向平移
π
3
個單位,最后將y=f(x)圖象上所有點的縱坐標縮短到原來的
1
2
(橫坐標不變)得到函數y=g(x)的圖象,寫出函數y=g(x)的解析式并給出y=|g(x)|的對稱軸方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=Asin(3x+φ) ( A>0,x∈(-∞,+∞),0<φ<π ) 在x=
π
12
時取得最大值4.
(1)求函數f(x)的最小正周期及解析式;
(2)求函數f(x)的單調增區(qū)間;
(3)求函數f(x)在[0,
π
3
]
上的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數 (1)求函數在區(qū)間[1,]上的最大值、最小值;

(2)求證:在區(qū)間(1,)上,函數圖象在函數圖象的下方;

(3)設函數,求證:。(

查看答案和解析>>

科目:高中數學 來源:2008-2009學年湖北省仙桃一中高三(上)第二次段考數學試卷(理科)(解析版) 題型:解答題

已知函數
(1)求函數f(x)的最小正周期和最小值;
(2)在給出的直角坐標系中,用描點法畫出函數y=f(x)在區(qū)間[0,π]上的圖象.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年山東省棗莊市高三上學期期末檢測理科數學 題型:解答題

(本題滿分12分)

已知函數

(1)求函數的極值點;

(2)若直線過點(0,—1),并且與曲線相切,求直線的方程;

(3)設函數,其中,求函數上的最小值.(其中e為自然對數的底數)

 

 

查看答案和解析>>

同步練習冊答案