直線y=x-1與拋物線y2=4x相交于A,B兩點,則|AB|=
8
8
分析:求出拋物線的焦點,可得直線AB恰好經(jīng)過拋物線的焦點F(1,0),再由拋物線的定義可得|AB|=|AF|+|BF|=x1+x2+p=x1+x2+2,最后由直線AB與拋物線消去y得關(guān)于x的方程,結(jié)合一元二次方程根與系數(shù)的關(guān)系,可得x1+x2=6,從而得到AB的長為8.
解答:解:∵拋物線方程為y2=4x,
∴2p=4,
p
2
=1,可得焦點為F(1,0)
∵直線y=x-1交x軸于點(1,0)
∴直線AB經(jīng)過拋物線的焦點F
設(shè)A(x1,y1),B(x2,y2),根據(jù)拋物線的定義可得|AF|=x1+1,|BF|=x2+1,
所以|AB|=|AF|+|BF|=x1+x2+2,
y=x-1
y2=4x
消去y,得x2-6x+1=0
∴根據(jù)韋達(dá)定理,得x1+x2=6
因此,|AB|=|x1+x2+2=8,
故答案為:8
點評:本題給出拋物線的一條焦點弦所在的直線方程方程,求該焦點弦的長度,著重考查了拋物線的簡單性質(zhì)和直線與拋物線的關(guān)系等知識點,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面上有一點列P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,對一切正整數(shù)n,點Pn在函數(shù)y=3x+
13
4
的圖象上,且Pn的橫坐標(biāo)構(gòu)成以-
5
2
為首項,-1為公差的等差數(shù)列{xn}.
(1)求點Pn的坐標(biāo);
(2)設(shè)拋物線列C1,C2,C3,…,Cn,…中的每一條的對稱軸都垂直于x軸,拋物線Cn的頂點為Pn,且過點Dn(0,n2+1).記與拋物線Cn相切于點Dn的直線的斜率為kn,求
1
k1k2
+
1
k2k3
+…+
1
kn-1kn

(3)設(shè)S={x|x=2xn,n∈N*},T={y|y=4yn,n∈N*},等差數(shù)列{an}的任一項an∈S∩T,其中a1是S∩T中的最大數(shù),-265<a10<-125,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)上有一點列P1(x1,y1),P2(x2,y2)…,Pn(xn,yn)…,對一切正整數(shù)n,點Pn在函數(shù)
y=3x+
13
4
的圖象上,且Pn的橫坐標(biāo)構(gòu)成以-
5
2
為首項,-1為公差的等差數(shù)列{xn}.
(Ⅰ)求點Pn的坐標(biāo);
(Ⅱ)設(shè)拋物線列C1,C2,C3,…Cn,…中的每一條的對稱軸都垂直于x軸,拋物線Cn的頂點為Pn,且過點Dn(0,n2+1),記與拋物線Cn相切于點Dn的直線的斜率為Kn,求
1
k1k2
+
1
k2k3
+…+
1
knkn+1
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由一個小區(qū)歷年市場行情調(diào)查得知,某一種蔬菜在一年12個月內(nèi)每月銷售量P(t)(單位:噸)與上市時間t(單位:月)的關(guān)系大致如圖(1)所示的折線ABCDE表示,銷售價格Q(t)(單位:元/千克)與上市時間t(單位:月)的大致關(guān)系如圖(2)所示的拋物線段GHR表示(H為頂點).
(Ⅰ)請分別寫出P(t),Q(t)關(guān)于t的函數(shù)關(guān)系式,并求出在這一年內(nèi)3到6月份的銷售額最大的月份?
(Ⅱ)圖(1)中由四條線段所在直線 圍成的平面區(qū)域為M,動點P(x,y)在M內(nèi)(包括邊界),求z=x-5y的最大值;
(Ⅲ) 由(Ⅱ),將動點P(x,y)所滿足的條件及所求的最大值由加法運算類比到乘法運算(如1≤2x-3y≤3類比為1≤
x2y3
≤3
),試列出P(x,y)所滿足的條件,并求出相應(yīng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年江西省高二下學(xué)期第一次月考數(shù)學(xué)文卷 題型:解答題

(本小題滿分13分)

已知雙曲線C: =1(a>0,b>0)的離心率為焦點到漸近線的距離為

(1)求雙曲線C的方程;

(2)已知直線x-y+m=0與雙曲線C交于不同的兩點A,B,且線段AB的中點在拋物

線y2=4 x上,求m的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面上有一點列Pn(xn,yn)(n∈N*),點Pn位于直線y=3x+上,且Pn的橫坐標(biāo)構(gòu)成以為首項,-1為公差的等差數(shù)列{xn}.

(1)求點Pn的坐標(biāo);

(2)設(shè)拋物線列C1,C2,…,Cn,…中的每一條的對稱軸都垂直于x軸,第n條拋物線Cn的頂點為Pn,且經(jīng)過點Dn(0,n2+1)(n∈N*).記與拋物線Cn相切于點Dn的直線的斜率為kn,求證:++…+;

(3)設(shè)S={x|x=2xn,n∈N*},T={y|y=4yn,n∈N*},等差數(shù)列{an}的任意一項an∈S∩T,其中a1是S∩T中的最大數(shù),且-256<a10<-125,求數(shù)列{an}的通項公式.

查看答案和解析>>

同步練習(xí)冊答案