(本題滿分16分)本題共有3個(gè)小題,第1小題滿分3分,第2小題滿分7分,第3小題滿分6分.
已知數(shù)列滿足,,是數(shù)列的前項(xiàng)和,且).
(1)求實(shí)數(shù)的值;
(2)求數(shù)的通項(xiàng)公式;
(3)對(duì)于數(shù)列,若存在常數(shù)M,使),且,則M叫做數(shù)列的“上漸近值”.
設(shè)),為數(shù)列的前項(xiàng)和,求數(shù)列的上漸近值.
(1) ;(2);(3)3
(1)
 .           ……………………2分
 .                                  ……………………3分
(2)由(1)可知,
,
.              ………5分
.               ………………………6分
因此,.          ………8分
,
.             ……………10分
(3)由(2)有,.于是,

。
。.            …………………………………12分

 。
  =.                  ……………14分
  又,
  的上漸近值是3.                             ……16分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知,數(shù)列滿足,,數(shù)列滿足,

(1)求證:數(shù)列為等比數(shù)列.
(2)令,求證:;
(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知 求的關(guān)系式及通項(xiàng)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知數(shù)列的首項(xiàng)為,前項(xiàng)和為,且對(duì)任意的,
當(dāng)時(shí),總是的等差中項(xiàng).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),是數(shù)列的前項(xiàng)和,,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)
根據(jù)如圖所示的程序框圖,將輸出的a,b值依次分別記為其中
(I)分別求數(shù)列的通項(xiàng)公式;
(II)令

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)
已知數(shù)列滿足:,
(I)求得值;
(II)設(shè)求證:數(shù)列是等比數(shù)列,并求出其通項(xiàng)公式;
(III)對(duì)任意的,在數(shù)列中是否存在連續(xù)的項(xiàng)構(gòu)成等差數(shù)列?若存在,寫(xiě)出這項(xiàng),并證明這項(xiàng)構(gòu)成等差數(shù)列;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)
等差數(shù)列的各項(xiàng)均為正數(shù),,前項(xiàng)和為為等比數(shù)列, ,且 
(1)求;
(2)求數(shù)列的前項(xiàng)和。
(3)若對(duì)任意正整數(shù)和任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在等差數(shù)列{an}中,滿足3a4=7a7,且a1>0,Sn是數(shù)列{an}前n項(xiàng)的和,若Sn取得最大值,則n=         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

數(shù)列中,已知,,若對(duì)任意正整數(shù),有,且,則該數(shù)列的前2010 項(xiàng)和                                              (   )
A..B..C..D..

查看答案和解析>>

同步練習(xí)冊(cè)答案