2.已知拋物線C:y2=2px(p>0)經(jīng)過點(4,-4).
(1)若拋物線C上一動點M到準線的距離為d,D(-1,3),求d+|MD|的最小值;
(2)若直線l與拋物線C交于A,B兩點,且線段AB的中點為N(2,$\frac{1}{3}$),求直線l的方程.

分析 (1)將點(4,-4)代入拋物線y2=2px(p>0)可得p值,利用拋物線的定義,求d+|MD|的最小值;
(2)根據(jù)線段AB的中點為N(2,$\frac{1}{3}$),利用點差法,求出直線斜率,可得直線l的方程.

解答 解:(1)拋物線C:y2=2px(p>0)經(jīng)過點(4,-4),可得p=2,
拋物線的準線方程為x=-1,
d+|MD|=|MF|+|MD|≥|DF|=$\sqrt{(1+1)^{2}+(0-3)^{2}}$=$\sqrt{13}$,
∴d+|MD|的最小值為$\sqrt{13}$;
(2)設(shè)A(x1,y1),B(x2,y2),
代入拋物線方程,兩式相減得:(y1+y2)(y1-y2)=4(x1-x2),
∴直線l的斜率k=$\frac{4}{2×\frac{1}{3}}$=6,
故直線l的方程為y-$\frac{1}{3}$=6(x-2),
即18x-3y-35=0.

點評 本題考查的知識點是直線與拋物線的位置關(guān)系,拋物線的標準方程,難度中檔.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知{an}是公差不為0的等差數(shù)列,a1=1,且a1,a3,a9成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求證:數(shù)列{bn}的前n項和Sn<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知等差數(shù)列{an}的前n項和為Sn,公差d≠0,且S1+S3=18,a1,a4,a13成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè){$\frac{{a}_{n}}{_{n}}$}是首項為1,公比為$\frac{1}{3}$的等比數(shù)列,求數(shù)列{bn}前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.某學習小組20名學生一次數(shù)學考試成績(單位:分)頻率直方圖如圖所示,已知前三個矩形框垂直于橫軸的高度成等差數(shù)列.
(1)求頻率分布直方圖中a的值;
(2)分別求出成績落在[50,60)與[80,90)中的學生人數(shù);
(3)從成績在[50,60)與[80,90)中的學生中人選2人,求此2人的成績相差20分以上的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若點A(1,1),B(2,m)都是方程ax2+xy-2=0的曲線上,則m=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若x>0,y>0,$\frac{4}{x}$+$\frac{1}{y}$=$\frac{1}{4}$,則x+4y的最小值為64.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.“a≤0”是“函數(shù)f(x)=ax+lnx存在極值”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.設(shè)命題p:?x0∈(-2,+∞),6+|x0|=5.命題q:?x∈(-∞,0),x2+$\frac{4}{{x}^{2}}$≥4.命題r:若|x|+|y|≤1,則$\frac{|y|}{|x|+2}$≤$\frac{1}{2}$.
(1)寫出命題r的否命題;
(2)判斷命題¬p,p∨r,p∧q的真假,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.一個正三棱柱的正視圖、俯視圖如圖所示,則該三棱柱的側(cè)視圖的面積為8$\sqrt{3}$.

查看答案和解析>>

同步練習冊答案