已知函數(shù)是定義在)上的偶函數(shù),則的值域?yàn)?u>   .            

試題分析:因?yàn),函?shù)是定義在)上的偶函數(shù),所以,定義域關(guān)于原點(diǎn)對稱,;又,
,故其值域?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824023001990473.png" style="vertical-align:middle;" />.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是定義在上的奇函數(shù),且當(dāng)時,
(Ⅰ)求的表達(dá)式;
(Ⅱ)判斷并證明函數(shù)在區(qū)間上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)滿足,且時,,則函數(shù)的圖象的交點(diǎn)的個數(shù)是      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若奇函數(shù)的定義域是,則等于(   )
A.3B.-3C.0D.無法計(jì)算

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在平面直角坐標(biāo)系中,若P,Q滿足條件:(1)P,Q都在函數(shù)f(x)的圖象上;(2)P,Q兩點(diǎn)關(guān)于直線y=x對稱,則稱點(diǎn)對{P,Q}是函數(shù)f(x)的一對“可交換點(diǎn)對”.({P,Q}與{Q,P}看作同一“可交換點(diǎn)”.試問函數(shù)的“可交換點(diǎn)對有(    )
A.0對B.1對C.2對D.3對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的圖象是 (    )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下圖展示了一個由區(qū)間(其中為一正實(shí)數(shù))到實(shí)數(shù)集R上的映射過程:區(qū)間中的實(shí)數(shù)對應(yīng)線段上的點(diǎn),如圖1;將線段圍成一個離心率為的橢圓,使兩端點(diǎn)、恰好重合于橢圓的一個短軸端點(diǎn),如圖2 ;再將這個橢圓放在平面直角坐標(biāo)系中,使其中心在坐標(biāo)原點(diǎn),長軸在軸上,已知此時點(diǎn)的坐標(biāo)為,如圖3,在圖形變化過程中,圖1中線段的長度對應(yīng)于圖3中的橢圓弧ADM的長度.圖3中直線與直線交于點(diǎn),則與實(shí)數(shù)對應(yīng)的實(shí)數(shù)就是,記作,

現(xiàn)給出下列5個命題
;   ②函數(shù)是奇函數(shù);③函數(shù)上單調(diào)遞增;   ④.函數(shù)的圖象關(guān)于點(diǎn)對稱;⑤函數(shù)時AM過橢圓的右焦點(diǎn).其中所有的真命題是:   (  )
A.①③⑤B.②③④C.②③⑤D.③④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)是定義在R上的奇函數(shù),當(dāng)時,,則_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)奇函數(shù)滿足,當(dāng)時,=,則(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案