【題目】管道清潔棒是通過在管道內(nèi)釋放清潔劑來清潔管道內(nèi)壁的工具,現(xiàn)欲用清潔棒清潔一個如圖1所示的圓管直角彎頭的內(nèi)壁,其縱截面如圖2所示,一根長度為的清潔棒在彎頭內(nèi)恰好處于位置(圖中給出的數(shù)據(jù)是圓管內(nèi)壁直徑大小,.

1)請用角表示清潔棒的長;

2)若想讓清潔棒通過該彎頭,清潔下一段圓管,求能通過該彎頭的清潔棒的最大長度.

【答案】1;(2.

【解析】

1)過的垂線,垂足為,易得,進一步可得;

2)利用導數(shù)求得最大值即可.

1)如圖,過的垂線,垂足為,在直角中,

,所以,同理,

.

2)設,

,則,即.

,且,則

時,,所以單調(diào)遞減;

時,,所以單調(diào)遞增,

所以當時,取得極小值,

所以.

因為,所以,又,

所以,又

所以,所以

所以,

所以能通過此鋼管的鐵棒最大長度為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在研究吸煙與患肺癌的關系中,通過收集數(shù)據(jù)、整理分析數(shù)據(jù)得吸煙與患肺癌有關的結論,并且在犯錯誤的概率不超過0.01的前提下認為這個結論是成立的,下列說法中正確的是(

A.100個吸煙者中至少有99人患有肺癌

B.1個人吸煙,那么這個人有99%的概率患有肺癌

C.100個吸煙者中一定有患肺癌的人

D.100個吸煙者中可能一個患肺癌的人也沒有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個結論:

①在回歸分析模型中,殘差平方和越大,說明模型的擬合效果越好;

②某學校有男教師60名、女教師40名,為了解教師的體育愛好情況,在全體教師中抽取20名調(diào)查,則宜采用的抽樣方法是分層抽樣;

③線性相關系數(shù)越大,兩個變量的線性相關性越弱;反之,線性相關性越強;

④在回歸方程中,當解釋變量每增加一個單位時,預報變量增加0.5個單位.

其中正確的結論是( )

A. ①②B. ①④

C. ②③D. ②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐PABCD的底面為矩形,AB,BC1,E,F分別是AB,PC的中點,DEPA.

1)求證:EF∥平面PAD;

2)求證:平面PAC⊥平面PDE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是一幅招貼畫的示意圖,其中ABCD是邊長為的正方形,周圍是四個全等的弓形.已知O為正方形的中心,GAD的中點,點P在直線OG上,弧AD是以P為圓心、PA為半徑的圓的一部分,OG的延長線交弧AD于點H.設弧AD的長為.

1)求關于的函數(shù)關系式;

2)定義比值為招貼畫的優(yōu)美系數(shù),當優(yōu)美系數(shù)最大時,招貼畫最優(yōu)美.證明:當角滿足:時,招貼畫最優(yōu)美.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是自然對數(shù)的底數(shù),.

1)求函數(shù)的圖象在處的切線方程;

2)若函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;

3)若函數(shù)在區(qū)間上有兩個極值點,且恒成立,求滿足條件的的最小值(極值點是指函數(shù)取極值時對應的自變量的值).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是( )

A.若散點圖中的樣本點散布在從左下角到右上角的區(qū)域,則散點圖中的兩個變量的相關關系為負相關

B.殘差平方和越小的模型,擬合的效果越好

C.用相關指數(shù)來刻畫回歸效果,的值越小,說明模型的擬合效果越好

D.線性相關系數(shù)越大,兩個變量的線性相關性越強;反之,線性相關性越弱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直三棱柱ABC A1B1C1中,ABAC,BB1BC,點P,Q,R分別是棱BC,CC1,B1C1的中點.

1)求證:A1R//平面APQ;

2)求證:直線B1C⊥平面APQ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A是拋物線Ey22px(p>0)上的一點,以點A和點B(2,0)為直徑兩端點的圓C交直線x1M,N兩點.

1)若|MN|2,求拋物線E的方程;

2)若0p1,拋物線E與圓(x5)2+y2=9x軸上方的交點為P,Q,點GPQ的中點,O為坐標原點,求直線OG斜率的取值范圍.

查看答案和解析>>

同步練習冊答案