【題目】隨著手機(jī)的發(fā)展,“微信”越來越成為人們交流的一種方式.某機(jī)構(gòu)對“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成人數(shù)如下表.
年齡(單位:歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年齡45歲為分界點(diǎn)”,由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān);
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計(jì) | |
贊成 | |||
不贊成 | |||
合計(jì) |
(Ⅱ)若從年齡在[25,35)和[55,65)的被調(diào)查人中按照分層抽樣的方法選取6人進(jìn)行追蹤調(diào)查,并給予其中3人“紅包”獎(jiǎng)勵(lì),求3人中至少有1人年齡在[55,65)的概率.
參考數(shù)據(jù)如下:
附臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
的觀測值: (其中)
【答案】(Ⅰ)列聯(lián)表見解析,有的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān);(Ⅱ).
【解析】試題分析:
(Ⅰ)由所給數(shù)據(jù)可以計(jì)算出年齡不低于45歲和年齡低于45歲的的人中贊成、不贊成的人數(shù),從而可得列聯(lián)表,再由所給公式計(jì)算可知有無把握;
(Ⅱ)由分層抽樣知區(qū)間上有2人,區(qū)間上有4人,把這6人分別編號后,可列舉出任取3人的各種組合,分別計(jì)算后可得所求概率.
試題解析:
(Ⅰ)根據(jù)條件得列聯(lián)表:
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計(jì) | |
贊成 | 10 | 27 | 37 |
不贊成 | 10 | 3 | 13 |
合計(jì) | 20 | 30 | 50 |
根據(jù)列聯(lián)表所給的數(shù)據(jù)代入公式得到:
所以有的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān);
(Ⅱ)解:
按照分層抽樣方法可知:
[55,65)(歲)抽。(人);
[25,35)(歲)抽。(人)
解:在上述抽取的6人中, 年齡在[55,65)(歲)有2人,年齡[25,35)(歲)有4人。
年齡在[55,65)(歲)記為;年齡在[25,35)(歲)記為, 則從6人中任取3名的所有情況為: 、、、、、、、、、、、、、、、 共20種情況,
其中至少有一人年齡在[55,65)歲情況有:、、、、、、、、、、、、、、、,共16種情況。
記至少有一人年齡在[55,65)歲為事件,則
∴至少有一人年齡在[55,65)歲之間的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正四棱錐中, ,側(cè)棱與底面所成角的正切值為.
(1)若是中點(diǎn),求異面直線與所成角的正切值;
(2)求側(cè)面與底面所成二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),求證:對任意的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購買的險(xiǎn)種,若普通座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:
某機(jī)構(gòu)為了研究某一品牌普通座以下私家車的投保情況,隨機(jī)抽取了輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:
類型 | ||||||
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(Ⅰ)按照我國《機(jī)動(dòng)車交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車交強(qiáng)險(xiǎn)價(jià)格的規(guī)定, ,記為某同學(xué)家里的一輛該品牌車在第四年續(xù)保時(shí)的費(fèi)用,求的分布列與數(shù)學(xué)期望;(數(shù)學(xué)期望值保留到個(gè)位數(shù)字)
(Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車,假設(shè)購進(jìn)一輛事故車虧損元,一輛非事故車盈利元:
①若該銷售商購進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至少有一輛事故車的概率;
②若該銷售商一次購進(jìn)輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】重慶市乘坐出租車的收費(fèi)辦法如下:
⑴不超過3千米的里程收費(fèi)10元; ⑵超過3千米的里程按每千米2元收費(fèi)(對于其中不足千米的部分,若其小于0.5千米則不收費(fèi),若其大于或等于0.5千米則按1千米收費(fèi)); 當(dāng)車程超過3千米時(shí),另收燃油附加費(fèi)1元. |
相應(yīng)系統(tǒng)收費(fèi)的程序框圖如圖所示,其中(單位:千米)為行駛里程,(單位:元)為所收費(fèi)用,用表示不大于的最大整數(shù),則圖中①處應(yīng)填( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,△是等邊三角形,△是等腰直角三角形,,平面平面,平面,點(diǎn)為的中點(diǎn),連接.
(1)求證:∥平面;
(2)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若曲線與有三個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一種飲料每箱裝有6聽,經(jīng)檢測,某箱中每聽的容量(單位:ml)如以下莖葉圖所示.
(Ⅰ)求這箱飲料的平均容量和容量的中位數(shù);
(Ⅱ)如果從這箱飲料中隨機(jī)取出2聽飲用,求取到的2聽飲料中至少有1聽的容量為250ml的概率
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com