分析 (1)分類(lèi)討論,利用l被⊙C1截得的弦長(zhǎng)為2$\sqrt{3}$,d=$\sqrt{4-3}$=1=$\frac{|1-k(-3-4)|}{\sqrt{1+{k}^{2}}}$,即可求直線l的方程
(2)分類(lèi)討論,求圓C2上的點(diǎn)到直線l的最遠(yuǎn)距離.
解答 解:(1)∵圓C1:x2+y2+6x-2y+6=0,即(x+3)2+(y-1)2=4,
由于直線x=4與圓C1不相交;
∴直線l的斜率存在,設(shè)l方程為:y=k(x-4)
圓C1的圓心到直線l的距離為d,
∵l被⊙C1截得的弦長(zhǎng)為2$\sqrt{3}$
∴d=$\sqrt{4-3}$=1=$\frac{|1-k(-3-4)|}{\sqrt{1+{k}^{2}}}$,
從而k(24k+7)=0,即k=0或k=-$\frac{7}{24}$
∴直線l的方程為:y=0或7x+24y-28=0
(2)∵圓C2:(x-4)2+(y-5)2=4,
當(dāng)直線l為y=0時(shí):最遠(yuǎn)距離為d=5+2=7,
當(dāng)直線l為7x+24y-28=0時(shí),最遠(yuǎn)距離d=$\frac{|28+120-28|}{\sqrt{49+576}}$+2=$\frac{34}{5}$.
點(diǎn)評(píng) 本題考查直線方程,考查點(diǎn)到直線的距離公式,考查直線與圓的位置關(guān)系,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|$\frac{3}{4}$≤x≤2} | B. | {x|$\frac{3}{4}$≤x<2} | C. | {x|x<2} | D. | {x|x>2或x≤$\frac{3}{4}$} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,2) | B. | (2,3) | C. | (3,4) | D. | (4,5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{tan2017°-tan1949°}{tan1°}$-67 | B. | $\frac{tan2016°-tan1949°}{tan1°}$-67 | ||
C. | $\frac{tan2017°-tan1949°}{tan1°}$-68 | D. | $\frac{tan2016°-tan1949°}{tan1°}$-68 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com