設(shè)是不同的直線,是不同的平面,下列命題中正確的是(    )
A.若,則
B.若,則
C.若,則
D.若,則
C

試題分析:由可知的關(guān)系為:相交、平行或線在面內(nèi),故A、B錯;由可在中a中找一條直線使,又,所以,而,所以,得,故選C.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在四棱錐PABCD中,PA⊥平面ABCD,△ABC是正三角形,ACBD的交點M恰好是AC的中點,又∠CAD=30°,PAAB=4,點N在線段PB上,且.

(1)求證:BDPC
(2)求證:MN∥平面PDC;
(3)設(shè)平面PAB∩平面PCDl,試問直線l是否與直線CD平行,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,底面是邊長為的正方形,,,且

(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)棱上是否存在一點,使直線與平面所成的角是?若存在,求的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,平面,,的中點.

(1)求證:平面;
(2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐中,分別為的中點.

(1)求證:EF∥平面;
(2)若平面平面,且º,求證:平面平面

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知平行四邊形ABCD(圖1)中,AB=4,BC=5,對角線AC=3,將三角形ACD沿AC折起至PAC位置(圖2),使二面角為600,G,H分別是PA,PC的中點.

(1)求證:PC平面BGH;
(2)求平面PAB與平面BGH夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

是互不重合的直線,是互不重合的平面,給出下列命題:
①若;
②若
③若不垂直于,則不可能垂直于內(nèi)的無數(shù)條直線;
④若;
⑤若.
其中正確命題的序號是     .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知是三條不同的直線,是三個不同的平面,下列命題:
①若,則;          ②若,則;
③若,,則;  ④若,則.
其中真命題是_      __.(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)是兩條不同的直線,是兩個不同的平面,下列命題中正確的是(    )
A.若,
B.若,則
C.若,
D.若

查看答案和解析>>

同步練習冊答案