已知命題p:|x-1|<a(a>0) ;命題q :x2+21>10x ,且p是q的既不充分也不必要條件,求a 的取值范圍.
解:由|x-1|<a (a>0 ),解得1-a<x<1+a ,
所以命題p對(duì)應(yīng)的集合為A={x|1-a <x<1+a,a>0} ,    
命題q 對(duì)應(yīng)的集合記為B={x|x<3,或x>7} .
顯然集合所以p不是q的必要條件.
如果p 是q 的充分條件,則pq,即AB.
所以1+a≤3,或1-a≥7.
又a>0,所以0<a≤2.
所以如果p 是q 的既不充分也不必要條件,應(yīng)有a>2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:?x∈[1,12],x2-a≥0.命題q:?x0∈R,使得x
 
2
0
+(a-1)x0+1<0.
(1)若p或q為真,p且q為假,求實(shí)數(shù)a的取值范圍. 
(2)實(shí)數(shù)m分別取什么值時(shí),復(fù)數(shù)z=m+1+(m-1)i是 ①實(shí)數(shù)?②虛數(shù)?③純虛數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•樂(lè)山一模)已知命題p:“?x∈[1,2],使x2-a<0成立”,若¬p是真命題,則實(shí)數(shù)a的取值范圍是
a≤1
a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:“|x-1|≤1”,命題q:“x∉Z”,如果“p且q”與“非p”同時(shí)為假命題,則滿足條件的x為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•江西模擬)已知命題p:|x+1|>2,q:x≥a,且¬p是¬q的充分不必要條件,則a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:|x+1|≤2,命題q:x≤a,若p是q的充分不必要條件,則a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案