圓x2+y2=1上的點到直線3x+4y-25=0距離的最小值為   
【答案】分析:圓心(0,0)到直線3x+4y-25=0的距離d=,圓x2+y2=1上的點到直線3x+4y-25=0距離的最小值是AC=5-r,從而可求
解答:解:∵圓心(0,0)到直線3x+4y-25=0的距離d=
∴圓x2+y2=1上的點到直線3x+4y-25=0距離的最小值是AC=5-r=5-1=4
故答案為:4
點評:本題主要考查了直線與圓的位置關(guān)系的應(yīng)用,解題的關(guān)鍵是把所求的距離轉(zhuǎn)化為求圓心到直線的距離,要注意本題中的BC是滿足圓上的點到直線的距離的最大值
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P為圓x2+y2=1上的動點,過P作x軸的垂線,垂足為Q,若
PM
MQ
,(其中λ為正常數(shù)),則點M的軌跡為( 。
A、圓B、橢圓C、雙曲線D、拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P是圓x2+y2=1上的一個動點,過點P作PQ⊥x軸于點Q,設(shè)
OM
=
OP
+
OQ
,則點M的軌跡方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知定點A(2,0),點Q是圓x2+y2=1上的動點,∠AOQ的平分線交AQ于M,當(dāng)Q點在圓上移動時,求動點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P是圓x2+y2=1上的動點,點P在y軸上的射影為Q,設(shè)滿足條件
QM
=2
QP
的點M的軌跡為曲線C.
(1)求曲線C的方程;
(2)設(shè)過點N(1,0)且斜率為k1(k1≠0)的直線l被曲線C所截得的弦的中點為A,O為坐標(biāo)原點,直線OA的斜率為k2,求k12+k22的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P是直線x+y=8上的點,P與圓x2+y2=1上的點距離的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案