求與x軸相切,圓心C在直線3x-y=0上,且截直線x-y=0得的弦長為2的圓的方程.
(x-1)2+(y-3)2 =9或(x+1)2+(y+3)2 =9

試題分析:解:設(shè)圓心為(a,b),半徑為r,
因為圓x軸相切,圓心C在直線3x-y=0上,
所以b=3a,r=|b|=|3a|,
圓心(a,3a)到直線x-y=0的距離d=
由r2-d2=()2     得:a=1或-1
所以圓的方程為(x-1)2+(y-3)2 =9或(x+1)2+(y+3)2 =9
點評:確定出圓心和半徑是解決圓的方程的關(guān)鍵,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系內(nèi),動圓過定點,且與定直線相切.
(1)求動圓圓心的軌跡的方程;
(2)中心在的橢圓的一個焦點為,直線過點.若坐標(biāo)原點關(guān)于直線的對稱點在曲線上,且直線與橢圓有公共點,求橢圓的長軸長取得最小值時的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

經(jīng)過圓的圓心且與直線平行的直線方程是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過點的圓C與直線相切于點.
(1)求圓C的方程;
(2)已知點的坐標(biāo)為,設(shè)分別是直線和圓上的動點,求的最小值.
(3)在圓C上是否存在兩點關(guān)于直線對稱,且以為直徑的圓經(jīng)過原點?若存在,寫出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若方程表示的曲線為圓,則的取值范圍是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,則以為直徑的圓的方程是(     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若直線平分圓,則的最小值是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過點P(,3)的直線,交圓于A、B兩點,Q為圓上任意一點,且Q到AB的最大距離為,則直線l的方程為                 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若方程表示圓,則的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案