甲、乙、丙三人按下面的規(guī)則進(jìn)行羽毛球比賽:第一局由甲、乙參加而丙輪空,以后每一局由前一局的獲勝者與輪空者進(jìn)行比賽,而前一局的失敗者輪空.比賽按這種規(guī)則一直進(jìn)行到其中一人連勝兩局或打滿6局時(shí)停止.設(shè)在每局中參賽者勝負(fù)的概率均為0.5,且各局勝負(fù)相互獨(dú)立.
(1)求打滿3局比賽還未停止的概率;
(2)理科:求比賽停止時(shí)已打局?jǐn)?shù)ξ的分布列與期望Eξ.
     文科:求比賽停止時(shí)已打局?jǐn)?shù)不少于5次的概率.
分析:(1)打滿3局比賽還未停止即在三局比賽中沒有人連勝兩局,分析其可能情況,每局比賽的結(jié)果相互獨(dú)立且互斥,利用獨(dú)立事件、互斥事件的概率求解即可.
(2)理科:ξ的所有可能值為2,3,4,5,6,分別根據(jù)相互獨(dú)立事件的概率乘法公式求出ξ取每一個(gè)值的概率,列出分布列,最后根據(jù)數(shù)學(xué)期望公式進(jìn)行求解.
文科:記比賽停止時(shí)已打5局為事件M,比賽停止時(shí)已打6局為事件N,求出P(M)與P(N)的值,最后根據(jù)互斥事件的概率加法公式進(jìn)行求解.
解答:解:令A(yù)k,Bk,Ck分別表示甲、乙、丙在第k局中獲勝.
(1)由獨(dú)立事件同時(shí)發(fā)生與互斥事件至少有一個(gè)發(fā)生的概率公式知,打滿3局比賽還未停止的概率為
P(A1C2B3)+P(B1C2A3)=
1
23
+
1
23
=
1
4

【理科】(2)ξ的所有可能值為2,3,4,5,6,且P(ξ=2)=P(A1A2)+P(B1B2)=
1
22
+
1
22
=
1
2
,
P(ξ=3)=P(A1C2C3)+P(B1C2C3)=
1
23
+
1
23
=
1
4

P(ξ=4)=P(A1C2B3B4)+P(B1C2A3A4)=
1
24
+
1
24
=
1
8

P(ξ=5)=P(A1C2B3A4A5)+P(B1C2A3B4B5)=
1
25
+
1
25
=
1
16
,
P(ξ=6)=P(A1C2B3A4C5)+P(B1C2A3B4C5)=
1
25
+
1
25
=
1
16

故有分布列
ξ 2 3 4 5 6
P
1
2
1
4
1
8
1
16
1
16
從而Eξ=2×
1
2
+3×
1
4
+4×
1
8
+5×
1
16
+6×
1
16
=
47
16
(局).(10分)
【文科】記比賽停止時(shí)已打5局為事件M,比賽停止時(shí)已打6局為事件N,那么有
P(M)=P(ξ=5)=P(A1C2B3A4A5)+P(B1C2A3B4B5)=
1
25
+
1
25
=
1
16
,(8分)
P(N)=P(ξ=6)=P(A1C2B3A4C5)+P(B1C2A3B4C5)=
1
25
+
1
25
=
1
16
,…(10分)
所以,比賽停止時(shí)已打局?jǐn)?shù)不少于5次的概率為
1
8
…(12分)
點(diǎn)評(píng):本題注意考查了互斥、獨(dú)立事件的概率,離散型隨機(jī)變量的分布列和期望等知識(shí),同時(shí)考查利用概率知識(shí)解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙三人按下面的規(guī)則進(jìn)行乒乓球比賽:第一局由甲、乙參加而丙輪空,以后每一局由前一局的獲勝者與輪空者進(jìn)行比賽,而前一局的失敗者輪空.比賽按這種規(guī)則一直進(jìn)行到其中一人連勝兩局或打滿6局時(shí)停止.設(shè)在每局中參賽者勝負(fù)的概率均為
12
,且各局勝負(fù)相互獨(dú)立.求:
(Ⅰ)打滿3局比賽還未停止的概率;
(Ⅱ)比賽停止時(shí)已打局?jǐn)?shù)ξ的分別列與期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分13分,(Ⅰ)小問5分,(Ⅱ)小問8分.)

甲、乙、丙三人按下面的規(guī)則進(jìn)行乒乓球比賽:第一局由甲、乙參加而丙輪空,以后每一局由前一局的獲勝者與輪空者進(jìn)行比賽,而前一局的失敗者輪空.比賽按這種規(guī)則一直進(jìn)行到其中一人連勝兩局或打滿6局時(shí)停止.設(shè)在每局中參賽者勝負(fù)的概率均為,且各局勝負(fù)相互獨(dú)立.求:(Ⅰ)打滿3局比賽還未停止的概率;(Ⅱ)比賽停止時(shí)已打局?jǐn)?shù)的分別列與期望E。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題12分)甲、乙、丙三人按下面的規(guī)則進(jìn)行乒乓球比賽:第一局由甲、乙參加而丙輪空,以后每一局由前一局的獲勝者與輪空者進(jìn)行比賽,而前一局的失敗者輪空.比賽按這種規(guī)則一直進(jìn)行到其中一人連勝兩局或打滿6局時(shí)停止.設(shè)在每局中參賽者勝負(fù)的概率均為,且各局勝負(fù)相互獨(dú)立.求:(Ⅰ) 打滿3局比賽還未停止的概率;(Ⅱ)比賽停止時(shí)已打局?jǐn)?shù)為6的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年黑龍江省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分12分)

甲、乙、丙三人按下面的規(guī)則進(jìn)行乒乓球比賽:第一局由甲、乙參加而丙輪空,以后每一局由前一局的獲勝者與輪空者進(jìn)行比賽,而前一局的失敗者輪空.比賽按這種規(guī)則一直進(jìn)行到其中一人連勝兩局或打滿6局時(shí)停止.設(shè)在每局中參賽者勝負(fù)的概率均為,且各局勝負(fù)相互獨(dú)立.求:

(1)打了兩局就停止比賽的概率;

(2)打滿3局比賽還未停止的概率;

(3)比賽停止時(shí)已打局?jǐn)?shù)的分布列與期望.

 

查看答案和解析>>

同步練習(xí)冊答案