如圖,已知直三棱柱ABC-A1B1C1中,AC⊥BC,D為AB的中點,AC=BC=BB1.

求證:(1)BC1⊥AB1.
(2)BC1∥平面CA1D.
見解析
【證明】如圖,以C1點為原點,C1A1,C1B1,C1C所在直線分別為x軸、y軸、z軸建立空間直角坐標系.

設(shè)AC=BC=BB1=2,
則A(2,0,2),B(0,2,2),C(0,0,2),A1(2,0,0),B1(0,2,0),
C1(0,0,0),D(1,1,2).
(1)由于=(0,-2,-2),
=(-2,2,-2),
所以·=0-4+4=0,
因此,
故BC1⊥AB1.
(2)取A1C的中點E,連接DE,由于E(1,0,1),
所以=(0,1,1).
=(0,-2,-2),
所以=-.
又ED和BC1不共線,所以ED∥BC1.
又DE?平面CA1D,BC1?平面CA1D,
故BC1∥平面CA1D.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在四棱錐P-ABCD中,側(cè)面PCD底面ABCD,PDCD,底面ABCD是直角梯形,AB∥DC,,,

(1)求證:BC平面PBD:
(2)求直線AP與平面PDB所成角的正弦值;
(3)設(shè)E為側(cè)棱PC上異于端點的一點,,試確定的值,使得二面角E-BD-P的余弦值為

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,三棱柱中,△ABC是正三角形,,平面平面,.

(1)證明:
(2)證明:求二面角的余弦值;
(3)設(shè)點是平面內(nèi)的動點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知四棱錐P-ABCD的底面ABCD是邊長為1的正方形,PD⊥底面ABCD,PD="AD."

(Ⅰ)求證:BC∥平面PAD;
(Ⅱ)若E、F分別為PB,AD的中點,求證:EF⊥BC;
(Ⅲ)求二面角C-PA-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a、b、c三個向量共面,則實數(shù)λ等于________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知正四棱錐P-ABCD的所有棱長都是2,底面正方形兩條對角線相交于O點,M是側(cè)棱PC的中點.

(1)求此正四棱錐的體積.
(2)求直線BM與側(cè)面PAB所成角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在三棱柱ABC-A1B1C1中,底面為邊長為1的正三角形,側(cè)棱AA1⊥底面ABC,點D在棱BB1上,且BD=1,若AD與平面AA1C1C所成的角為α,則sinα的值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知非零向量a,b及平面α,若向量a是平面α的法向量,則a·b=0是向量b所在直線平行于平面α或在平面α內(nèi)的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點A(1,2,1),B(-1,3,4),D(1,1,1),若=2,則||的值是______.

查看答案和解析>>

同步練習冊答案