已知f(x)=,若f(x)=3,則x的值是( )
A.1
B.1或
C.1,或±
D.
【答案】分析:利用分段函數(shù)的解析式,根據(jù)自變量所在的區(qū)間進行討論表示出含字母x的方程,通過求解相應(yīng)的方程得出所求的字母x的值.或者求出該分段函數(shù)在每一段的值域,根據(jù)所給的函數(shù)值可能屬于哪一段確定出字母x的值.
解答:解:該分段函數(shù)的三段各自的值域為(-∞,1],[O,4).[4,+∞),
而3∈[0,4),故所求的字母x只能位于第二段.
,而-1<x<2,

故選D.
點評:本題考查分段函數(shù)的理解和認識,考查已知函數(shù)值求自變量的思想,考查學(xué)生的分類討論思想和方程思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f'(x)是f(x)的導(dǎo)數(shù),記f(1)(x)=f'(x),f(n)(x)=(f(n-1)(x))'(n∈N,n≥2),給出下列四個結(jié)論:
①若f(x)=xn,則f(5)(1)=120;
②若f(x)=cosx,則f(4)(x)=f(x);
③若f(x)=ex,則f(n)(x)=f(x)(n∈N+);
④設(shè)f(x)、g(x)、f(n)(x)和g(n)(x)(n∈N+)都是相同定義域上的可導(dǎo)函數(shù),h(x)=f(x)•g(x),則h(n)(x)=f(n)(x)•g(n)(x)(n∈N+).
則結(jié)論正確的是
①②③
①②③
(多填、少填、錯填均得零分).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=xα,若f'(-1)=-4,則α的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-alnx,x∈(1,2),
(1)判斷函數(shù)f(x)的單調(diào)性;
(2)若f(x)在(1,2)為增函數(shù),g(x)=x-a
x
在(0,1)上為減函數(shù).
求證:方程f(x)=g(x)+2在(0,+∞)內(nèi)有唯一解;
(3)當(dāng)b>-1時,若f(x)≥2bx-
1
x2
在x∈(0,1)內(nèi)恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若數(shù)學(xué)公式,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實數(shù)a,滿足a>1并且使g(x)在區(qū)間數(shù)學(xué)公式上的值域為數(shù)學(xué)公式,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)第一輪基礎(chǔ)知識訓(xùn)練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實數(shù)a,滿足a>1并且使g(x)在區(qū)間上的值域為,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案